TY - JOUR A1 - Pauly, Maren A1 - Helle, Gerhard A1 - Miramont, Cecile A1 - Buentgen, Ulf A1 - Treydte, Kerstin A1 - Reinig, Frederick A1 - Guibal, Frederic A1 - Sivan, Olivier A1 - Heinrich, Ingo A1 - Riedel, Frank A1 - Kromer, Bernd A1 - Balanzategui, Daniel A1 - Wacker, Lukas A1 - Sookdeo, Adam A1 - Brauer, Achim T1 - Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas JF - Scientific reports N2 - Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-32251-2 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Heinrich, Ingo A1 - Balanzategui, Daniel A1 - Bens, Oliver A1 - Blasch, Gerald A1 - Blume, Theresa A1 - Boettcher, Falk A1 - Borg, Erik A1 - Brademann, Brian A1 - Brauer, Achim A1 - Conrad, Christopher A1 - Dietze, Elisabeth A1 - Dräger, Nadine A1 - Fiener, Peter A1 - Gerke, Horst H. A1 - Güntner, Andreas A1 - Heine, Iris A1 - Helle, Gerhard A1 - Herbrich, Marcus A1 - Harfenmeister, Katharina A1 - Heussner, Karl-Uwe A1 - Hohmann, Christian A1 - Itzerott, Sibylle A1 - Jurasinski, Gerald A1 - Kaiser, Knut A1 - Kappler, Christoph A1 - Koebsch, Franziska A1 - Liebner, Susanne A1 - Lischeid, Gunnar A1 - Merz, Bruno A1 - Missling, Klaus Dieter A1 - Morgner, Markus A1 - Pinkerneil, Sylvia A1 - Plessen, Birgit A1 - Raab, Thomas A1 - Ruhtz, Thomas A1 - Sachs, Torsten A1 - Sommer, Michael A1 - Spengler, Daniel A1 - Stender, Vivien A1 - Stüve, Peter A1 - Wilken, Florian T1 - Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE) JF - Vadose zone journal N2 - The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes. Y1 - 2018 U6 - https://doi.org/10.2136/vzj2018.06.0116 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Kaiser, Knut A1 - Oldorff, Silke A1 - Breitbach, Carsten A1 - Kappler, Christoph A1 - Theuerkauf, Martin A1 - Scharnweber, Tobias A1 - Schult, Manuela A1 - Kuester, Mathias A1 - Engelhardt, Christof A1 - Heinrich, Ingo A1 - Hupfer, Michael A1 - Schwalbe, Grit A1 - Kirschey, Tom A1 - Bens, Oliver T1 - A submerged pine forest from the early Holocene in the Mecklenburg Lake District, northern Germany JF - Boreas N2 - For the first time, evidence of a submerged pine forest from the early Holocene can be documented in a central European lake. Subaquatic tree stumps were discovered in Lake Giesenschlagsee at a depth of between 2 and 5m using scuba divers, side-scan sonar and a remotely operated vehicle. Several erect stumps, anchored to the ground by roots, represent an insitu record of this former forest. Botanical determination revealed the stumps to be Scots pine (Pinus sylvestris) with an individual tree age of about 80years. The trees could not be dated by means of dendrochronology, as they are older than the regional reference chronology for pine. Radiocarbon ages from the wood range from 10880 +/- 210 to 10370 +/- 130cal. a BP, which is equivalent to the mid-Preboreal to early Boreal biozones. The trees are rooted in sedge peat, which can be dated to this period as well, using pollen stratigraphical analysis. Tilting of the peat bed by 4m indicates subsidence of the ground due to local dead ice melting, causing the trees to become submerged and preserved for millennia. Together with recently detected Lateglacial insitu tree occurrences in nearby lakes, the submerged pine forest at Giesenschlagsee represents a new and highly promising type of geo-bio-archive for the wider region. Comparable insitu pine remnants occur at some terrestrial (buried setting) and marine (submerged setting) sites in northern central Europe and beyond, but they partly differ in age. In general, the insitu pine finds document shifts of the zonal boreal forest ecosystem during the late Quaternary. Y1 - 2018 U6 - https://doi.org/10.1111/bor.12314 SN - 0300-9483 SN - 1502-3885 VL - 47 IS - 3 SP - 910 EP - 925 PB - Wiley CY - Hoboken ER -