TY - JOUR A1 - Sree, K. Sowjanya A1 - Keresztes, Aron A1 - Müller-Röber, Bernd A1 - Brandt, Ronny A1 - Eberius, Matthias A1 - Fischer, Wolfgang A1 - Appenroth, Klaus-J. T1 - Phytotoxicity of cobalt ions on the duckweed Lemna minor - Morphology, ion uptake, and starch accumulation JF - Chemosphere : chemistry, biology and toxicology as related to environmental problems N2 - Cobalt (Co2+) inhibits vegetative growth of Lemna minor gradually from 1 mu M to 100 mu M. Fronds accumulated up to 21 mg Co2+ g(-1) dry weight at 10 mu M external Co2+ indicating hyperaccumulation. Interestingly, accumulation of Co2+ did not decrease the iron (Fe) content in fronds, highlighting L. minor as a suitable system for studying effects of Co2+ undisturbed by Fe deficiency symptoms unlike most other plants. Digital image analysis revealed the size distribution of fronds after Co2+ treatment and also a reduction in pigmentation of newly formed daughter fronds unlike the mother fronds during the 7-day treatment. Neither chlorophyll nor photosystem II fluorescence changed significantly during the initial 4 d, indicating effective photosynthesis. During the later phase of the 7-day treatment, however, chlorophyll content and photosynthetic efficiency decreased in the Co2+-treated daughter fronds, indicating that Co2+ inhibits the biosynthesis of chlorophyll rather than leading to the destruction of pre-existing pigment molecules. In addition, during the first 4 d of Co2+ treatment starch accumulated in the fronds and led to the transition of chloroplasts to chloro-amyloplasts and amylo-chloroplasts, while starch levels strongly decreased thereafter. (C) 2015 Elsevier Ltd. All rights reserved. KW - Chloroplast KW - Cobalt KW - Lemnaceae KW - Lemna minor KW - Phytotoxicity KW - Starch accumulation Y1 - 2015 U6 - https://doi.org/10.1016/j.chemosphere.2015.03.008 SN - 0045-6535 SN - 1879-1298 VL - 131 SP - 149 EP - 156 PB - Elsevier CY - Oxford ER -