TY - JOUR A1 - Sunyer, M. A. A1 - Hundecha, Y. A1 - Lawrence, D. A1 - Madsen, H. A1 - Willems, Patrick A1 - Martinkova, M. A1 - Vormoor, Klaus Josef A1 - Bürger, Gerd A1 - Hanel, M. A1 - Kriauciuniene, J. A1 - Loukas, A. A1 - Osuch, M. A1 - Yucel, I. T1 - Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe JF - Hydrology and earth system sciences : HESS N2 - Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models, they cannot be directly used in hydrological models. Hence, statistical downscaling is necessary to address climate change impacts at the catchment scale. This study compares eight statistical downscaling methods (SDMs) often used in climate change impact studies. Four methods are based on change factors (CFs), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation in most catchments in both winter and summer. For individual catchments, the downscaled time series tend to agree on the direction of the change but differ in the magnitude. Differences between the SDMs vary between the catchments and depend on the season analysed. Similarly, general conclusions cannot be drawn regarding the differences between CFs and BC methods. The performance of the BC methods during the control period also depends on the catchment, but in most cases they represent an improvement compared to RCM outputs. Analysis of the variance in the ensemble of RCMs and SDMs indicates that at least 30% and up to approximately half of the total variance is derived from the SDMs. This study illustrates the large variability in the expected changes in extreme precipitation and highlights the need for considering an ensemble of both SDMs and climate models. Recommendations are provided for the selection of the most suitable SDMs to include in the analysis. Y1 - 2015 U6 - https://doi.org/10.5194/hess-19-1827-2015 SN - 1027-5606 SN - 1607-7938 VL - 19 IS - 4 SP - 1827 EP - 1847 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Vormoor, Klaus Josef A1 - Lawrence, D. A1 - Heistermann, Maik A1 - Bronstert, Axel T1 - Climate change impacts on the seasonality and generation processes of floods BT - projections and uncertainties for catchments with mixed snowmelt/rainfall regimes JF - Hydrology and earth system sciences : HESS N2 - Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach to simulate daily discharge for a reference (1961–1990) and a future (2071–2099) period, we analysed the projected changes in flood seasonality and generation processes in six catchments with mixed snowmelt/rainfall regimes under the current climate in Norway. The multi-model/multi-parameter ensemble consists of (i) eight combinations of global and regional climate models, (ii) two methods for adjusting the climate model output to the catchment scale, and (iii) one conceptual hydrological model with 25 calibrated parameter sets. Results indicate that autumn/winter events become more frequent in all catchments considered, which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in the two catchments located in northern and south-eastern Norway. The changes in flood regimes result from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP primarily due to increasing temperature.We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias correction tend to be the largest contributors. The relative role of hydrological parameter uncertainty, however, is highest for those catchments showing the largest changes in flood seasonality, which confirms the lack of robustness in hydrological model parameterization for simulations under transient hydrometeorological conditions. Y1 - 2015 U6 - https://doi.org/10.5194/hess-19-913-2015 SN - 1027-5606 SN - 1607-7938 VL - 19 IS - 2 SP - 913 EP - 931 PB - Copernicus Publications CY - Göttingen ER -