TY - JOUR A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wegener, Michael A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Singh, Rajeev T1 - Thermal-pulse tomography of polarization distributions in a cylindrical geometry JF - IEEE transactions on dielectrics and electrical insulation N2 - Fast, three-dimensional polarization mapping in piezoelectric sensor cables was performed by means of the novel thermal-pulse tomography (TPT) technique with a lateral resolution of 200 mum. The active piezoelectric cable material (a copolymer of polyvinylidene fluoride with trifluoroethylene) was electrically poled with a point-to-cable corona discharge. A focused laser was employed to heat the opaque outer electrode, and the short-circuit current generated by the thermal pulse was used to obtain 3D polarization maps via the scale transformation method. The article describes the TPT technique as a fast non-destructive option for studying cylindrical geometries. Y1 - 2006 U6 - https://doi.org/10.1109/TDEI.2006.258210 SN - 1070-9878 VL - 13 IS - 5 SP - 1030 EP - 1035 PB - IEEE CY - Piscataway ER - TY - JOUR A1 - Flores Suárez, Rosaura A1 - Ganesan, Lakshmi Meena A1 - Wirges, Werner A1 - Gerhard, Reimund A1 - Mellinger, Axel T1 - Imaging liquid crystals dispersed in a ferroelectric polymer matrix by means of thermal-pulse tomography N2 - A new arrangement of the optical elements in a Thermal-Pulse-Tomography (TPT) setup allows to scan micrometer structures in composite and heterogeneous samples such as polymer-dispersed liquid crystals (PDLCs). The non-destructive TPT technique allows the determination of three-dimensional profiles of polarization and space charge in dielectrics. The samples under study were 12 mu m thick films of a copolymer of vinylidene fluoride with trifluoroethylene P(VDF- TrFE) (65/35) with embedded liquid-crystal droplets. The poling process was performed in direct contact well above the coercive field of the copolymer. The 3D map obtained from scanning with a 10 mu m wide spot shows elliptically shaped areas with liquid-crystal droplets. Considering the droplets as oblate spheroids, their major axis lies in the x-y plane, while their minor axis in the z direction measures 0.5 mu m or more. This result is in good agreement with scanning electron micrographs. It is believed that the major axis is overestimated due to imaging of liquid-crystal clusters. Y1 - 2010 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2010.5539683 SN - 1070-9878 ER - TY - JOUR A1 - Mellinger, Axel A1 - Flores Suárez, Rosaura A1 - Singh, Rajeev A1 - Wegener, Michael A1 - Wirges, Werner A1 - Lang, Sidney B. A1 - Gerhard, Reimund T1 - High-resolution space-charge and polarization tomography with thermal pulses N2 - Die Arbeit wurde am 13.03.2006 mit dem "BEST PAPER AWARD" des deutschen IEEE Instrumentation and Measurement (I&M) Chapter ausgezeichnet. Y1 - 2006 SN - 3-8007-2939-3 ER - TY - JOUR A1 - Pham, Cong Duc A1 - Petre, Anca A1 - Berquez, Laurent A1 - Flores Suárez, Rosaura A1 - Mellinger, Axel A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - 3D high-resolution mapping of polarization profiles in thin poly(vinylidenefluoride-trifluoroethylene) (PVDF- TrFE) films using two thermal techniques N2 - In this paper, two non-destructive thermal methods are used in order to determine, with a high degree of accuracy, three-dimensional polarization distributions in thin films (12 mu m) of poly(vinylidenefluoride- trifluoroethylene) (PVDF-TrFE). The techniques are the frequency-domain Focused Laser Intensity Modulation Method (FLIMM) and time-domain Thermal-Pulse Tomography (TPT). Samples were first metalized with grid-shaped electrode and poled. 3D polarization mapping yielded profiles which reproduce the electrode-grid shape. The polarization is not uniform across the sample thickness. Significant polarization values are found only at depths beyond 0.5 mu m from the sample surface. Both methods provide similar results, TPT method being faster, whereas the FLIMM technique has a better lateral resolution. Y1 - 2009 UR - http://ieeexplore.ieee.org/servlet/opac?punumber=94 U6 - https://doi.org/10.1109/TDEI.2009.5128505 SN - 1070-9878 ER -