TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Kleinpeter, Erich A1 - Shlykov, Sergey A. A1 - Osadchiy, Dmitriy Yu. T1 - Molecular structure and conformational analysis of 3-methyl-3-phenyl-3-silatetrahydropyran. Gas-phase electron diffraction, low temperature NMR and quantum chemical calculations JF - Tetrahedron N2 - The molecular structure and conformational behavior of 3-methyl-3-phenyl-3-silatetrahydropyran 1 was studied by gas-phase electron diffraction (GED-MS), low temperature C-13 NMR spectroscopy (LT NMR) and theoretical calculations. The 1-Ph-eq and 1-Ph-ax conformers were located on the potential energy surface. Rotation about the Si-C-ph bond revealed the phenyl ring orthogonal to the averaged plane of the silatetrahydropyran ring for 1-Ph-eq and a twisted orientation for 1-Ph-ax. Theoretical calculations and GED analysis indicate the predominance of 1-Ph-ax in the gas phase with the ratio of conformers (GED) 1-Ph-eq:1-Ph-ax=38:62 (Delta G degrees(307)=-0.29 kcal/mol). In solution, LT NMR spectroscopy gives almost the opposite ratio Ph-eq:1-Ph-ax=68:32 (Delta G degrees(103)=0.16 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of compound 1 in the gas phase and in solution. (C) 2015 Elsevier Ltd. All rights reserved. KW - 3-Silatetrahydropyrans KW - Conformational analysis KW - Low temperature NMR spectroscopy KW - Gas-phase electron diffraction KW - Quantum chemical calculations Y1 - 2015 U6 - https://doi.org/10.1016/j.tet.2015.03.117 SN - 0040-4020 VL - 71 IS - 23 SP - 3810 EP - 3818 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Kleinpeter, Erich T1 - Stereochemistry of 3-isopropoxy-3-methyl-1,3-oxasilinane-the first 3-silatetrahydropyran with an exo-cyclic RO-Si bond JF - Tetrahedron N2 - Molecular structure and conformational behavior of 3-isopropoxy-3-methyl-3-oxasilinane is studied by low temperature C-13 NMR spectroscopy and theoretical calculations (DFT, MP2). Two conformers, 1-ROax and 1-ROeq, were found experimentally and located on the potential energy surface. LT C-13 NMR spectroscopy gives almost equal population of the two conformers at 98 K with Delta G(98K)degrees=0.02 kcal/mol in favor of 1-ROax and Delta G(98K)(#)=4.5 kcal/mol. The corresponding DFT calculated values (Delta G(98K)degrees=0.03 kcal/mol, Delta G(98K)(#)=5.1 kcal/mol) are in excellent agreement with the experiment. Detailed DFT and MP2 calculations of the solvent effect on the conformational equilibrium were performed and highlighted the leveling out of the two conformers when transferred from gas to solution. (C) 2015 Published by Elsevier Ltd. KW - 1,3-Oxasilinanes KW - Conformational equilibrium KW - Barrier to ring inversion KW - Solvent effects KW - Assignment of stereochemistry Y1 - 2015 U6 - https://doi.org/10.1016/j.tet.2015.07.047 SN - 0040-4020 VL - 71 IS - 38 SP - 6720 EP - 6726 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Shainyan, Bagrat A. A1 - Kirpichenko, Svetlana V. A1 - Chipanina, Nina N. A1 - Oznobikhina, Larisa P. A1 - Kleinpeter, Erich A1 - Shlykov, Sergey A. A1 - Osadchiy, Dmitriy Yu. T1 - Synthesis and Conformational Analysis of 3-Methyl-3-silatetrahydropyran by GED, FTIR, NMR, and Theoretical Calculations: Comparative Analysis of 1-Hetero-3-methyl-3-silacyclohexanes JF - The journal of organic chemistry N2 - 3-Methyl-3-silatetrahydropyran 1 was synthesized and its molecular structure and conformational behavior was studied by gas-phase electron diffraction (GED), FTIR, low temperature H-1 and C-13 NMR spectroscopy, and by theoretical calculations (DFT, MP2). Two conformers; 1-ax and 1-eq; were located on the potential energy Surface. In the gas phase; a slight predominance of the axial conformer was determined, with the ratio 1-ax:1-eq = 54(9):46(9) (from GED) or 53:47 or 61;39 (from IR). In solution, LT NMR spectroscopy at 103 K gives the ratio 1-ax:1-eq = 35:65 (-Delta G(103)degrees = 0.13 kcal/mol). Simulation of solvent effects using the PCM continuum model or by calculation of the corresponding solvent-solute complexes allowed us to rationalize the experimentally observed opposite conformational predominance of the conformers of 3-methyl-3-silatettahydropyran in the gas phase and in solution. Comparative analysis of the effect of heteroatom in 1-hetero-3-methyl-3-silacyclohexanes on the structure, stereoelectronic interactions, and relative energies of the conformers is done. Y1 - 2015 U6 - https://doi.org/10.1021/acs.joc.5b02355 SN - 0022-3263 VL - 80 IS - 24 SP - 12492 EP - 12500 PB - American Chemical Society CY - Washington ER -