TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Al-Amoush, H. A1 - Babeyko, Andrey A1 - Bartov, Yosef A1 - Baumann, M. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bribach, Jens A1 - El-Kelani, R. A1 - Forster, A. A1 - Förster, Hans-Jürgen A1 - Frieslander, U. A1 - Garfunkel, Zvi A1 - Grunewald, Steffen A1 - Gotze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, S. A1 - Hofstetter, Alfons A1 - Jackel, K. H. A1 - Kesten, Dagmar A1 - Kind, Rainer A1 - Maercklin, Nils A1 - Mechie, James A1 - Mohsen, Amjad A1 - Neubauer, F. M. A1 - Oberhänsli, Roland A1 - Qabbani, I. A1 - Ritter, O. A1 - Rumpker, G. A1 - Rybakov, M. A1 - Ryberg, Trond A1 - Scherbaum, Frank A1 - Schmidt, J. A1 - Schulze, A. A1 - Sobolev, Stephan Vladimir A1 - Stiller, M. A1 - Th, T1 - The crustal structure of the Dead Sea Transform N2 - To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries Y1 - 2004 ER - TY - JOUR A1 - Mechie, James A1 - Abu-Ayyash, Khalil A1 - Ben-Avraham, Zvi A1 - El-Kelani, R. A1 - Mohsen, Amjad A1 - Rumpker, Georg A1 - Saul, J. A1 - Weber, Michael H. T1 - Crustal shear velocity structure across the Dead Sea Transform from two-dimensional modelling of DESERT project explosion seismic data N2 - An analysis of the shear (S) waves recorded during the wide-angle reflection/refraction (WRR) experiment as part of the DESERT project crossing the Dead Sea Transform (DST) reveals average crustal S-wave velocities of 3.3-3.5 km s(-1) beneath the WRR profile. Together with average crustal P-wave velocities of 5.8-6.1 km s(-1) from an already published study this provides average crustal Poisson's ratios of 0.26-0.27 (V-p/V-s = 1.76-1.78) below the profile. The top two layers consisting predominantly of sedimentary rocks have S- wave velocities of 1.8-2.7kms(-1) and Poisson's ratios of 0.25-0.31 (V-p/V-s = 1.73-1.91). Beneath these two layers the seismic basement has average S- wave velocities of around 3.6 km s(-1) east of the DST and about 3.7 km s(-1) west of the DST and Poisson's ratios of 0.24-0.25 (V-p/V-s = 1.71-1.73). The lower crust has an average S-wave velocity of about 3.75 km s(-1) and an average Poisson's ratio of around 0.27 (V-p/V-s = 1.78). No Sn phase refracted through the uppermost mantle was observed. The results provide for the first time information from controlled source data on the crustal S-wave velocity structure for the region west of the DST in Israel and Palestine and agree with earlier results for the region east of the DST in the Jordanian highlands. A shear wave splitting study using SKS waves has found evidence for crustal anisotropy beneath the WRR profile while a receiver function study has found evidence for a lower crustal, high S-wave velocity layer east of the DST below the profile. Although no evidence was found in the S-wave data for either feature, the S-wave data are not incompatible with crustal anisotropy being present as the WRR profile only lies 30 degrees off the proposed symmetry axis of the anisotropy where the difference in the two S-wave velocities is still very small. In the case of the lower crustal, high S-wave velocity layer, if the velocity change at the top of this layer comprises a small first-order discontinuity underlain by a 2 km thick transition zone, instead of just a large first-order discontinuity, then both the receiver function data and the WRR data presented here can be satisfied. Finally, the S-wave velocities and Poisson's ratios which have been derived in this study are typical of continental crust and do not require extensional processes to explain them Y1 - 2005 ER - TY - JOUR A1 - Mechie, James A1 - Abu-Ayyash, Khalil A1 - Ben-Avraham, Zvi A1 - El-Kelani, Radwan A1 - Qabbani, Isam A1 - Weber, Michael H. T1 - Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data N2 - As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/ refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1 100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left- lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo-mechanical modelling of the DSB supports such a scenario. As the DESIRE seismic profile crosses the DST about 100 km north of where the DESERT seismic profile crosses the DST, it has been possible to construct a crustal cross-section of the region before the 107 km left-lateral shear on the DST occurred. Y1 - 2009 UR - http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-246X U6 - https://doi.org/10.1111/j.1365-246X.2009.04161.x SN - 0956-540X ER - TY - JOUR A1 - Weber, Michael H. A1 - Abu-Ayyash, Khalil A1 - Abueladas, Abdel-Rahman A1 - Agnon, Amotz A1 - Alasonati-Tašárová, Zuzana A1 - Al-Zubi, Hashim A1 - Babeyko, Andrey A1 - Bartov, Yuval A1 - Bauer, Klaus A1 - Becken, Michael A1 - Bedrosian, Paul A. A1 - Ben-Avraham, Zvi A1 - Bock, Günter A1 - Bohnhoff, Marco A1 - Bribach, Jens A1 - Dulski, Peter A1 - Ebbing, Joerg A1 - El-Kelani, Radwan J. A1 - Foerster, Andrea A1 - Förster, Hans-Jürgen A1 - Frieslander, Uri A1 - Garfunkel, Zvi A1 - Götze, Hans-Jürgen A1 - Haak, Volker A1 - Haberland, Christian A1 - Hassouneh, Mohammed A1 - Helwig, Stefan L. A1 - Hofstetter, Alfons A1 - Hoffmann-Rothe, Arne A1 - Jaeckel, Karl-Heinz A1 - Janssen, Christoph A1 - Jaser, Darweesh A1 - Kesten, Dagmar A1 - Khatib, Mohammed Ghiath A1 - Kind, Rainer A1 - Koch, Olaf A1 - Koulakov, Ivan A1 - Laske, Maria Gabi A1 - Maercklin, Nils T1 - Anatomy of the Dead Sea transform from lithospheric to microscopic scale N2 - Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere. Y1 - 2009 UR - http://www.agu.org/journals/rg/ U6 - https://doi.org/10.1029/2008rg000264 SN - 8755-1209 ER - TY - JOUR A1 - Mechie, James A1 - Ben-Avraham, Zvi A1 - Weber, Michael H. A1 - Götze, Hans-Jürgen A1 - Koulakov, Ivan A1 - Mohsen, A. A1 - Stiller, M. T1 - The distribution of Moho depths beneath the Arabian plate and margins JF - TECTONOPHYSICS N2 - In this study three new maps of Moho depths beneath the Arabian plate and margins are presented. The first map is based on the combined gravity model, EIGEN 06C, which includes data from satellite missions and ground-based studies, and thus covers the whole region between 31 degrees E and 60 inverted perpendicular E and between 12 degrees N and 36 degrees N. The second map is based on seismological and ground-based gravity data while the third map is based only on seismological data. Both these maps show gaps due to lack of data coverage especially in the interior of the Arabian plate. Beneath the interior of the Arabian plate the Moho lies between 32 and 45 km depth below sea level. There is a tendency for higher Pn and Sn velocities beneath the northeastern parts of the plate interior with respect to the southwestern parts of the plate interior. Across the northern, destructive margin with the Eurasian plate, the Moho depths increase to over 50 km beneath the Zagros mountains. Across the conservative western margin, the Dead Sea Transform (DST). Moho depths decrease from almost 40 km beneath the highlands east of the DST to about 21-23 km under the southeastern Mediterranean Sea. This decrease seems to be modulated by a slight depression in the Moho beneath the southern DST. The constructive southwestern and southeastern margins of the Arabian plate also show the Moho shallowing from the plate interior towards the plate boundaries. A comparison of the abruptness of the Moho shallowing between the margins of the Arabian plate, the conjugate African margin at 26 degrees N and several Atlantic margins shows a complex picture and suggests that the abruptness of the Moho shallowing may reflect fundamental differences in the original structure of the margins. (C) 2012 Elsevier B.V. All rights reserved. KW - Moho depths KW - Arabian plate KW - Red Sea KW - Velocity models KW - Receiver functions KW - Satellite gravity data Y1 - 2013 U6 - https://doi.org/10.1016/j.tecto.2012.11.015 SN - 0040-1951 SN - 1879-3266 VL - 609 SP - 234 EP - 249 PB - ELSEVIER SCIENCE BV CY - AMSTERDAM ER - TY - JOUR A1 - Lev, L. A1 - Almogi-Labin, Ahuva A1 - Mischke, Steffen A1 - Ito, E. A1 - Ben-Avraham, Zvi A1 - Stein, M. T1 - Paleohydrology of Lake Kinneret during the Heinrich event H2 JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - During the last glacial period lake Kinneret (the Sea of Galilee) fluctuated between high and low water levels reflecting the hydrological conditions of the lake watershed. Here, we focus on the hydrology of the lake after its retreat from the last glacial MIS2 (similar to 27-25 ka BP) highest stand of similar to 170 m below mean sea level (m bsl) to the low stand of similar to 214 m bsl at similar to 24-21 ka BP. The limnological-hydrological history of this time interval is recovered from trench and borehole that were dug and drilled in the southwestern shore of the lake at Ohalo-II archeological site. Cyprideis torosa (Ostracoda) recovered from the trench yielded elemental, Sr-87/Sr-86 and delta O-18 isotope data that provide information on the shore environment during the low stand period. The Sr-87/Sr-86 and Sr/Ca ratios in the ostracods, varying between similar to 0.70789 and similar to 0.70815 and 0.0017 and 0.0030, respectively indicate contributions of waters from the last glacial lake and regional runoff. The increase in the Sr-87/Sr-86 ratios reflects the decreasing effect of the last glacial Lake Kinneret waters and enhanced contribution of local runoff that washed down dried mountain soils that were previously developed during the wet and vegetated glacial. The lake retreat at similar to 24 ka BP coincided with the Heinrich event H2 at the northern Atlantic. H2 was expressed by severe aridity in Lake Kinneret-Dead Sea watershed. The limnological-hydrological change at post H2 was accompanied by 2% decrease in the delta O-18 value from -2% to -4% reflecting the change in the composition of the east Mediterranean rain sources. The last glacial lake Sr-87/Sr-86 ratio is similar to the Tiberias Spa saline waters and distinctly different from the modern Lake Kinneret fresh waters: Sr-87/Sr-86 similar to 0.70785 compared to similar to 0.70760, respectively. This difference is explained by enhanced contribution of Ca-chloride brines with high Sr-87/Sr-86 values to the last glacial lake and reduced Jordan River contribution due to cold freezing conditions at its headwaters, while the modern Lake Kinneret is more affected by low Sr-87/Sr-86 freshwater from the Jordan watershed. KW - Ostracods KW - Lake Kinneret KW - Paleolimnology KW - Paleohydrology KW - Sr-87/Sr-86 KW - delta O-18 Y1 - 2014 U6 - https://doi.org/10.1016/j.palaeo.2014.01.005 SN - 0031-0182 SN - 1872-616X VL - 396 SP - 183 EP - 193 PB - Elsevier CY - Amsterdam ER -