TY - JOUR A1 - Grotheer, Hendrik A1 - Meyer, Vera A1 - Riedel, Theran A1 - Pfalz, Gregor A1 - Mathieu, Lucie A1 - Hefter, Jens H. A1 - Gentz, Torben A1 - Lantuit, Hugues A1 - Mollennauer, Gesine A1 - Fritz, Michael T1 - Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea JF - Geophysical research letters N2 - Detailed organic geochemical and carbon isotopic (delta C-13 and Delta C-14) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that similar to 40% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas. Plain Language Summary Increasing air and sea surface temperatures at high latitudes leads to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean, which there can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments, and thus removed from the short-term carbon cycle. Basins, canyons, and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes, and radiocarbon to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea near Herschel Island. We quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget of the area and estimate that more than a third of all carbon released by local permafrost erosion is efficiently trapped in marine sediments. This highlights the importance of regional sediment traps for carbon sequestration. Y1 - 2020 U6 - https://doi.org/10.1029/2019GL085897 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 3 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Radosavljevic, Boris A1 - Lantuit, Hugues A1 - Knoblauch, Christian A1 - Couture, Nicole A1 - Herzschuh, Ulrike A1 - Fritz, Michael T1 - Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada JF - Journal of marine science and engineering N2 - Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area. KW - permafrost KW - Arctic Ocean KW - stable carbon isotopes KW - nitrogen KW - sediment KW - chemistry KW - sediment dynamics KW - Beaufort Sea KW - grain size Y1 - 2022 U6 - https://doi.org/10.3390/jmse10111589 SN - 2077-1312 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Rolph, Rebecca A1 - Overduin, Pier Paul A1 - Ravens, Thomas A1 - Lantuit, Hugues A1 - Langer, Moritz T1 - ArcticBeach v1.0 BT - a physics-based parameterization of pan-Arctic coastline erosion JF - Frontiers in Earth Science N2 - In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations. KW - permafrost KW - erosion KW - modelling KW - arctic KW - climate change Y1 - 2022 U6 - https://doi.org/10.3389/feart.2022.962208 SN - 2296-6463 VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Klein, Konstantin A1 - Lantuit, Hugues A1 - Rolph, Rebecca T1 - Drivers of Turbidity and Its Seasonal Variability at Herschel Island Qikiqtaruk (Western Canadian Arctic) T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Arctic is greatly affected by climate change. Increasing air temperatures drive permafrost thaw and an increase in coastal erosion and river discharge. This results in a greater input of sediment and organic matter into nearshore waters, impacting ecosystems by reducing light transmission through the water column and altering biogeochemistry. This potentially results in impacts on the subsistence economy of local people as well as the climate due to the transformation of suspended organic matter into greenhouse gases. Even though the impacts of increased suspended sediment concentrations and turbidity in the Arctic nearshore zone are well-studied, the mechanisms underpinning this increase are largely unknown. Wave energy and tides drive the level of turbidity in the temperate and tropical parts of the world, and this is generally assumed to also be the case in the Arctic. However, the tidal range is considerably lower in the Arctic, and processes related to the occurrence of permafrost have the potential to greatly contribute to nearshore turbidity. In this study, we use high-resolution satellite imagery alongside in situ and ERA5 reanalysis data of ocean and climate variables in order to identify the drivers of nearshore turbidity, along with its seasonality in the nearshore waters of Herschel Island Qikiqtaruk, in the western Canadian Arctic. Nearshore turbidity correlates well to wind direction, wind speed, significant wave height, and wave period. Nearshore turbidity is superiorly correlated to wind speed at the Beaufort Shelf compared to in situ measurements at Herschel Island Qikiqtaruk, showing that nearshore turbidity, albeit being of limited spatial extent, is influenced by large-scale weather and ocean phenomenons. We show that, in contrast to the temperate and tropical ocean, freshly eroded material is the predominant driver of nearshore turbidity in the Arctic, rather than resuspension, which is caused by the vulnerability of permafrost coasts to thermo-erosion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1270 KW - ocean color remote sensing KW - Arctic ocean KW - suspended sediment KW - Landsat KW - Sentinel 2 KW - ERA5 KW - nearshore zone Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-561765 SN - 1866-8372 SP - 1 EP - 13 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Klein, Konstantin A1 - Lantuit, Hugues A1 - Rolph, Rebecca T1 - Drivers of Turbidity and Its Seasonal Variability at Herschel Island Qikiqtaruk (Western Canadian Arctic) JF - Water / Molecular Diversity Preservation International (MDPI) N2 - The Arctic is greatly affected by climate change. Increasing air temperatures drive permafrost thaw and an increase in coastal erosion and river discharge. This results in a greater input of sediment and organic matter into nearshore waters, impacting ecosystems by reducing light transmission through the water column and altering biogeochemistry. This potentially results in impacts on the subsistence economy of local people as well as the climate due to the transformation of suspended organic matter into greenhouse gases. Even though the impacts of increased suspended sediment concentrations and turbidity in the Arctic nearshore zone are well-studied, the mechanisms underpinning this increase are largely unknown. Wave energy and tides drive the level of turbidity in the temperate and tropical parts of the world, and this is generally assumed to also be the case in the Arctic. However, the tidal range is considerably lower in the Arctic, and processes related to the occurrence of permafrost have the potential to greatly contribute to nearshore turbidity. In this study, we use high-resolution satellite imagery alongside in situ and ERA5 reanalysis data of ocean and climate variables in order to identify the drivers of nearshore turbidity, along with its seasonality in the nearshore waters of Herschel Island Qikiqtaruk, in the western Canadian Arctic. Nearshore turbidity correlates well to wind direction, wind speed, significant wave height, and wave period. Nearshore turbidity is superiorly correlated to wind speed at the Beaufort Shelf compared to in situ measurements at Herschel Island Qikiqtaruk, showing that nearshore turbidity, albeit being of limited spatial extent, is influenced by large-scale weather and ocean phenomenons. We show that, in contrast to the temperate and tropical ocean, freshly eroded material is the predominant driver of nearshore turbidity in the Arctic, rather than resuspension, which is caused by the vulnerability of permafrost coasts to thermo-erosion. KW - ocean color remote sensing KW - Arctic ocean KW - suspended sediment KW - Landsat KW - Sentinel 2 KW - ERA5 KW - nearshore zone Y1 - 2022 U6 - https://doi.org/10.3390/w14111751 SN - 2073-4441 VL - 14 SP - 1 EP - 13 PB - MDPI CY - Basel, Schweiz ET - 11 ER - TY - JOUR A1 - Klein, Konstantin P. A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Doxaran, David A1 - Juhls, Bennet A1 - Nitze, Ingmar A1 - Walch, Daniela A1 - Poste, Amanda A1 - Søreide, Janne E. T1 - The Arctic Nearshore Turbidity Algorithm (ANTA) BT - A multi sensor turbidity algorithm for Arctic nearshore environments JF - Science of remote sensing N2 - The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk. KW - Ocean color remote sensing KW - Turbidity retrieval KW - Nearshore zone KW - Arctic Ocean Y1 - 2021 U6 - https://doi.org/10.1016/j.srs.2021.100036 SN - 2666-0172 VL - 4 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Klein, Konstantin P. A1 - Lantuit, Hugues A1 - Heim, Birgit A1 - Doxaran, David A1 - Juhls, Bennet A1 - Nitze, Ingmar A1 - Walch, Daniela A1 - Poste, Amanda A1 - Søreide, Janne E. T1 - The Arctic Nearshore Turbidity Algorithm (ANTA) BT - A multi sensor turbidity algorithm for Arctic nearshore environments T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Arctic is greatly impacted by climate change. The increase in air temperature drives the thawing of permafrost and an increase in coastal erosion and river discharge. This leads to a greater input of sediment and organic matter into coastal waters, which substantially impacts the ecosystems by reducing light transmission through the water column and altering the biogeochemistry, but also the subsistence economy of local people, and changes in climate because of the transformation of organic matter into greenhouse gases. Yet, the quantification of suspended sediment in Arctic coastal and nearshore waters remains unsatisfactory due to the absence of dedicated algorithms to resolve the high loads occurring in the close vicinity of the shoreline. In this study we present the Arctic Nearshore Turbidity Algorithm (ANTA), the first reflectance-turbidity relationship specifically targeted towards Arctic nearshore waters that is tuned with in-situ measurements from the nearshore waters of Herschel Island Qikiqtaruk in the western Canadian Arctic. A semi-empirical model was calibrated for several relevant sensors in ocean color remote sensing, including MODIS, Sentinel 3 (OLCI), Landsat 8 (OLI), and Sentinel 2 (MSI), as well as the older Landsat sensors TM and ETM+. The ANTA performed better with Landsat 8 than with Sentinel 2 and Sentinel 3. The application of the ANTA to Sentinel 2 imagery that matches in-situ turbidity samples taken in Adventfjorden, Svalbard, shows transferability to nearshore areas beyond Herschel Island Qikiqtaruk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1250 KW - Ocean color remote sensing KW - Turbidity retrieval KW - Nearshore zone KW - Arctic Ocean Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-553692 SN - 1866-8372 IS - 1250 ER - TY - JOUR A1 - Tanski, George A1 - Lantuit, Hugues A1 - Ruttor, Saskia A1 - Knoblauch, Christian A1 - Radosavljevic, Boris A1 - Strauß, Jens A1 - Wolter, Juliane A1 - Irrgang, Anna Maria A1 - Ramage, Justine Lucille A1 - Fritz, Michael T1 - Transformation of terrestrial organic matter along thermokarst-affected permafrost coasts in the Arctic JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (delta C-13-TOC, delta C-13-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, delta C-13 signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty adds, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55% and a TN and DN loss of 53 and 48%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source. KW - Canadian Arctic KW - Coastal erosion KW - Retrogressive thaw slump KW - Biogeochemistry KW - Carbon degradation Y1 - 2017 U6 - https://doi.org/10.1016/j.scitotenv.2016.12.152 SN - 0048-9697 SN - 1879-1026 VL - 581 SP - 434 EP - 447 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Couture, Nicole J. A1 - Irrgang, Anna Maria A1 - Pollard, Wayne A1 - Lantuit, Hugues A1 - Fritz, Michael T1 - Coastal erosion of permafrost soils along the yukon coastal plain and fluxes of organic carbon to the canadian beaufort sea JF - Journal of geophysical research : Biogeosciences N2 - Reducing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from coastal erosion. Different terrain units were assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, SOC contents were reduced by 19% and sediment contents by 16%. The SOC content in a 1m(2) column of soil varied according to the height of the bluff, ranging from 30 to 662kg, with a mean value of 183kg. Forty-four per cent of the SOC was within the top 1m of soil and values varied based on surficial materials, ranging from 30 to 53kg C/m(3), with a mean of 41kg. Eighty per cent of the shoreline was erosive with a mean annual rate of change of -0.7m/yr. This resulted in a SOC flux per meter of shoreline of 132kg C/m/yr, and a total flux for the entire 282km of the Yukon coast of 35.5 x 10(6) kg C/yr (0.036 Tg C/yr). The mean flux of sediment per meter of shoreline was 5.3 x 10(3) kg/m/yr, with a total flux of 1,832 x 10(6)kg/yr (1.832 Tg/yr). Sedimentation rates indicate that approximately 13% of the eroded carbon was sequestered in nearshore sediments, where the overwhelming majority of organic carbon was of terrestrial origin. Plain Language Summary The oceans help slow the buildup of carbon dioxide (CO2) because they absorb much of this greenhouse gas. However, if carbon from other sources is added to the oceans, it can affect their ability to absorb atmospheric CO2. Our study examines the organic carbon added to the Canadian Beaufort Sea from eroding permafrost along the Yukon coast, a region quite vulnerable to erosion. Understanding carbon cycling in this area is important because environmental changes in the Arctic such as longer open water seasons, rising sea levels, and warmer air, water and soil temperatures are likely to increase coastal erosion and, thus, carbon fluxes to the sea. We measured the carbon in different types of permafrost soils and applied corrections to account for the volume taken up by various types of ground ice. By determining how quickly the shoreline is eroding, we assessed how much organic carbon is being transferred to the ocean each year. Our results show that 36 x 10(6) kg of carbon is added annually from this section of the coast. If we extrapolate these results to other coastal areas along the Canadian Beaufort Sea, the flux of organic carbon is nearly 3 times what was previously thought. KW - coastal erosion KW - organic carbon KW - ground ice KW - Yukon KW - Canadian Beaufort Sea Y1 - 2018 U6 - https://doi.org/10.1002/2017JG004166 SN - 2169-8953 SN - 2169-8961 VL - 123 IS - 2 SP - 406 EP - 422 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Ramage, Justine Lucille A1 - Irrgang, Anna Maria A1 - Morgenstern, Anne A1 - Lantuit, Hugues T1 - Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean JF - Biogeosciences N2 - Retrogressive thaw slumps (RTSs) are among the most active thermokarst landforms in the Arctic and deliver a large amount of material to the Arctic Ocean. However, their contribution to the organic carbon (OC) budget is unknown. We provide the first estimate of the contribution of RTSs to the nearshore OC budget of the Yukon Coast, Canada, and describe the evolution of coastal RTSs between 1952 and 2011 in this area. We (1) describe the evolution of RTSs between 1952 and 2011; (2) calculate the volume of eroded material and stocks of OC mobilized through slumping, including soil organic carbon (SOC) and dissolved organic carbon (DOC); and (3) estimate the OC fluxes mobilized through slumping between 1972 and 2011. We identified RTSs using high- resolution satellite imagery from 2011 and geocoded aerial photographs from 1952 and 1972. To estimate the volume of eroded material, we applied spline interpolation on an airborne lidar dataset acquired in July 2013. We inferred the stocks of mobilized SOC and DOC from existing related literature. Our results show a 73% increase in the number of RTSs and 14% areal expansion between 1952 and 2011. In the study area, RTSs displaced at least 16.6 x 10(6) m(3) of material, 53% of which was ice, and mobilized 145.9 x 10(6) kg of OC. Between 1972 and 2011, 49 RTSs displaced 8.6 x 10(3) m(3) yr(-1) of material, adding 0.6% to the OC flux released by coastal retreat along the Yukon Coast. Our results show that the contribution of RTSs to the nearshore OC budget is non-negligible and should be included when estimating the quantity of OC released from the Arctic coast to the ocean. Y1 - 2018 U6 - https://doi.org/10.5194/bg-15-1483-2018 SN - 1726-4170 SN - 1726-4189 VL - 15 IS - 5 SP - 1483 EP - 1495 PB - Copernicus CY - Göttingen ER -