TY - JOUR A1 - Reiche, Jürgen A1 - Kratz, Karl A1 - Hofmann, Dieter A1 - Lendlein, Andreas T1 - Current status of Langmuir monolayer degradation of polymeric biomaterials JF - The international journal of artificial organs N2 - Langmuir monolayer degradation (LMD) experiments with polymers possessing outstanding biomedical application potential yield information regarding the kinetics of their hydrolytic or enzymatic chain scission under well-defined and adjustable degradation conditions. A brief review is given of LMD investigations, including the author's own work on 2-dimensional (2D) polymer systems, providing chain scission data, which are not disturbed by simultaneously occurring transport phenomena, such as water penetration into the sample or transport of scission fragments out of the sample. A knowledge-based approach for the description and simulation of polymer hydrolytic and enzymatic degradation based on a combination of fast LMD experiments and computer simulation of the water penetration is briefly introduced. Finally, the advantages and disadvantages of this approach are discussed. KW - Monolayer KW - Hydrolytic degradation KW - Enzymatic degradation KW - Biomaterial KW - Degradable polymer Y1 - 2011 U6 - https://doi.org/10.5301/IJAO.2011.6401 SN - 0391-3988 VL - 34 IS - 2 SP - 123 EP - 128 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Köpf, Michael H. A1 - Harder, Heiko A1 - Reiche, Jürgen A1 - Santer, Svetlana T1 - Impact of temperature on the LB patterning of DPPC on Mica JF - Langmuir N2 - The influence of the subphase temperature on the stripe pattern formation during Langmuir-Blodgett transfer (LB patterning) is investigated in a combined experimental and theoretical study. According to our experiments on the LB transfer of dipalmitoylphosphatidylcholine (DPPC) on planar mica substrates, even small temperature changes between 21.5 and 24.5 degrees C lead to significant changes in the monolayer patterns. For a constant surface pressure and dipper speed, the width of the stripes and the overall spatial period of the patterns increase with increasing subphase temperature. Because the stripe patterns are ascribed to alternating monolayer domains in the liquid-expanded and the liquid-condensed phases, the working regime for the formation of stripes is found to depend strongly on the respective surface pressure-area isotherm. These experimental findings are in accordance with the results of a theoretical investigation based on a model that takes hydrodynamics and the monolayer thermodynamics into account. Y1 - 2011 U6 - https://doi.org/10.1021/la202728t SN - 0743-7463 VL - 27 IS - 20 SP - 12354 EP - 12360 PB - American Chemical Society CY - Washington ER -