TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Matsumoto, Yosuke A1 - Amano, Takanobu A1 - Hoshino, Masahiro T1 - Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants BT - I. Electron Shock-surfing Acceleration JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Electron injection at high Mach number nonrelativistic perpendicular shocks is studied here for parameters that are applicable to young SNR shocks. Using high-resolution large-scale two-dimensional fully kinetic particle-in-cell simulations and tracing individual particles, we in detail analyze the shock-surfing acceleration (SSA) of electrons at the leading edge of the shock foot. The central question is to what degree the process can be captured in 2D3V simulations. We find that the energy gain in SSA always arises from the electrostatic field of a Buneman wave. Electron energization is more efficient in the out-of-plane orientation of the large-scale magnetic field because both the phase speed and the amplitude of the waves are higher than for the in-plane scenario. Also, a larger number of electrons is trapped by the waves compared to the in-plane configuration. We conclude that significant modifications of the simulation parameters are needed to reach the same level of SSA efficiency as in simulations with out-of-plane magnetic field or 3D simulations. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock waves Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab1b6d SN - 0004-637X SN - 1538-4357 VL - 878 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kobzar, Oleh A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Bohdan, Artem T1 - Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants JF - Monthly notices of the Royal Astronomical Society N2 - A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there. KW - acceleration of particles KW - shock waves KW - turbulence KW - methods: numerical KW - cosmic rays KW - ISM: supernova remnants Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1201 SN - 0035-8711 SN - 1365-2966 VL - 469 SP - 4985 EP - 4998 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bohdan, Artem A1 - Niemiec, Jacek A1 - Kobzar, Oleh A1 - Pohl, Martin T1 - Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta beta p =5.10(-4) and 0.5 beta p =), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90 degrees to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate bp provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa872a SN - 0004-637X SN - 1538-4357 VL - 847 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Bret, Antoine A1 - Wieland, Volkmar T1 - Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present results of 2D3V particle-in-cell simulations of nonrelativistic plasma collisions with absent or parallel large-scale magnetic field for parameters applicable to the conditions at young supernova remnants. We study the collision of plasma slabs of different density, leading to two different shocks and a contact discontinuity. Electron dynamics play an important role in the development of the system. While nonrelativistic shocks in both unmagnetized and magnetized plasmas can be mediated by Weibel-type instabilities, the efficiency of shock-formation processes is higher when a large-scale magnetic field is present. The electron distributions downstream of the forward and reverse shocks are generally isotropic, whereas that is not always the case for the ions. We do not see any significant evidence of pre-acceleration, neither in the electron population nor in the ion distribution. KW - acceleration of particles KW - instabilities KW - ISM: supernova remnants KW - methods: numerical KW - plasmas KW - shock waves Y1 - 2012 U6 - https://doi.org/10.1088/0004-637X/759/1/73 SN - 0004-637X SN - 1538-4357 VL - 759 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -