TY - JOUR A1 - Wegerich, Franziska A1 - Turano, Paola A1 - Allegrozzi, Marco A1 - Moehwald, Helmuth A1 - Lisdat, Fred T1 - Cytochrome c mutants for superoxide biosensors N2 - The effect of introducing positive charges (lysines) in human cytochrome c (cyt c) on the redox properties and reaction rates of cyt c with superoxide radicals was studied. The mutated forms of this electron-transfer protein are used as sensorial recognition elements for the amperometric detection of the reactive oxygen radical. The proteins were prepared by site-directed mutagenesis focusing on amino acids near the heme edge. The 11 mutants of human cyt c expressed in the course of this research have been characterized by UV-vis spectroscopy, circular dichroism, and NMR spectroscopy to verify overall structure integrity as well as axial coordination of the heme iron. The mutants are investigated voltammetrically using promoter-modified gold electrodes with respect to redox activity and formal redox potential. The rate constants for the reaction with superoxide have been determined spectrophotometrically. Four mutants show a higher reaction rate with the radical as compared to the wild type. These mutants are used for the construction of superoxide sensors based on thiol-modified gold electrodes and covalently fixed proteins. We found that the E66K mutant-based electrode has a clearly higher sensitivity in comparison with the wild-type-based sensor while retaining the high selectivity and showing a good storage stability. Y1 - 2009 UR - http://pubs.acs.org/journal/ancham U6 - https://doi.org/10.1021/Ac802571h SN - 0003-2700 ER - TY - JOUR A1 - Haase, Martin F. A1 - Grigoriev, Dmitry A1 - Moehwald, Helmuth A1 - Tiersch, Brigitte A1 - Shchukin, Dmitry G. T1 - Encapsulation of amphoteric substances in a pH-sensitive pickering emulsion N2 - Oil-in-water (o/w) Pickering emulsions stabilized with silica nanoparticles were prepared. Droplets of diethyl phthalate (oil phase) act as reservoirs for 8-hydroxyquinoline (8-HQ), which is used as (a) the hydrophobizing agent for the silica particles and (b) an encapsulated corrosion inhibitor for application in active feedback coatings. The hydrophobization of silica nanoparticles with 8-HQ is determined by the amount of this agent adsorbed on the nanoparticle surface. The latter is governed by the 8-HQ concentration in the aqueous phase, which in turn depends on the degree of protonation and fir ally on the pH. We observe three ranges of 8-HQ adsorption value with respect to nanoparticle hydophobization: (I) insufficient, (2) sufficient, and (3) excessive adsorption by the formation of an 8-HQ bilayer, where only case 2 leads to the necessary nanoparticle hydrophobization. Hence emulsions stable in a narrow pH window between pH 5.5 and 4.4 follow. Here functional molecules are sufficiently charged to compensate for the charges on silica nanoparticles to make them interfacially active and thus able to stabilize an emulsion but they are still to a large extent uncharged and thereby remain in the oil phase. The emulsification is reversible upon changing the pH to a value beyond the stability region. Y1 - 2010 UR - http://pubs.acs.org/journal/jpccck U6 - https://doi.org/10.1021/Jp104052s SN - 1932-7447 ER - TY - JOUR A1 - Belova, Valentina A1 - Shchukin, Dmitry G. A1 - Gorin, Dmitry A. A1 - Kopyshev, Alexey A1 - Moehwald, Helmuth T1 - A new approach to nucleation of cavitation bubbles at chemically modified surfaces JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Cavitation at the solid surface normally begins with nucleation, in which defects or assembled molecules located at a liquid-solid interface act as nucleation centers and are actively involved in the evolution of cavitation bubbles. Here, we propose a simple approach to evaluate the behavior of cavitation bubbles formed under high intensity ultrasound (20 kHz, 51.3 W cm (2)) at solid surfaces, based on sonication of patterned substrates with a small roughness (less than 3 nm) and controllable surface energy. A mixture of octadecylphosphonic acid (ODTA) and octadecanethiol (ODT) was stamped on the Si wafer coated with different thicknesses of an aluminium layer (20-500 nm). We investigated the growth mechanism of cavitation bubble nuclei and the evolution of individual pits (defects) formed under sonication on the modified surface. A new activation behavior as a function of Al thickness, sonication time, ultrasonic power and temperature is reported. In this process cooperativity is introduced, as initially formed pits further reduce the energy to form bubbles. Furthermore, cavitation on the patterns is a controllable process, where up to 40-50 min of sonication time only the hydrophobic areas are active nucleation sites. This study provides a convincing proof of our theoretical approach on nucleation. Y1 - 2011 U6 - https://doi.org/10.1039/c1cp20218a SN - 1463-9076 VL - 13 IS - 17 SP - 8015 EP - 8023 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Haase, Martin F. A1 - Grigoriev, Dmitry A1 - Moehwald, Helmuth A1 - Tiersch, Brigitte A1 - Shchukin, Dmitry G. T1 - Nanoparticle modification by weak polyelectrolytes for pH-sensitive pickering emulsions JF - Langmuir N2 - The affinity of weak polyelectrolyte coated oxide particles to the oil-water interface can be controlled by the degree of dissociation and the thickness of the weak polyelectrolyte layer. Thereby the oil in water (o/w) emulsification ability of the particles can be enabled. We selected the weak polyacid poly(methacrylic acid sodium salt) and the weak polybase poly(allylamine hydrochloride) for the surface modification of oppositely charged alumina and silica colloids, respectively. The isoelectric point and the pH range of colloidal stability of both particle-polyelectrolyte composites depend on the thickness of the weak polyelectrolyte layer. The pH-dependent wettability of a weak polyelectrolyte-coated oxide surface is characterized by contact angle measurements. The o/w emulsification properties of both particles for the nonpolar oil dodecane and the more polar oil diethylphthalate are investigated by measurements of the droplet size distributions. Highly stable emulsions can be obtained when the degree of dissociation of the weak polyelectrolyte is below 80%. Here the average droplet size depends on the degree of dissociation, and a minimum can be found when 15 to 45% of the monomer units are dissociated. The thickness of the adsorbed polyelectrolyte layer strongly influences the droplet size of dodecane/water emulsion droplets but has a less pronounced impact on the diethylphthalate/water droplets. We explain the dependency of the droplet size on the emulsion pH value and the polyelectrolyte coating thickness with arguments based on the particle-wetting properties, the particle aggregation state, and the oil phase polarity. Cryo-SEM visualization shows that the regularity of the densely packed particles on the oil-water interface correlates with the degree of dissociation of the corresponding polyelectrolyte. Y1 - 2011 U6 - https://doi.org/10.1021/la1027724 SN - 0743-7463 VL - 27 IS - 1 SP - 74 EP - 82 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cui, Qianling A1 - Shen, Guizhi A1 - Yan, Xuehai A1 - Li, Lidong A1 - Moehwald, Helmuth A1 - Bargheer, Matias T1 - Fabrication of Au@Pt multibranched nanoparticles and their application to in situ SERS monitoring JF - ACS applied materials & interfaces N2 - Here, we present an Au@Pt core-shell multibranched nanoparticle as a new substrate capable of in situ surface-enhanced Raman scattering (SERS), thereby enabling monitoring of the catalytic reaction on the active surface. By careful control of the amount of Pt deposited bimetallic Au@Pt, nanoparticles with moderate performance both for SERS and catalytic activity were obtained. The Pt-catalyzed reduction of 4-nitrothiophenol by borohydride was chosen as the model reaction. The intermediate during the reaction was captured and clearly identified via SERS spectroscopy. We established in situ SERS spectroscopy as a promising and powerful technique to investigate in situ reactions taking place in heterogeneous catalysis. KW - nanoparticles KW - gold KW - core-shell nanostructure KW - surface-enhanced Raman scattering KW - heterogeneous catalysis KW - bimetallic nanoparticles Y1 - 2014 U6 - https://doi.org/10.1021/am504709a SN - 1944-8244 VL - 6 IS - 19 SP - 17075 EP - 17081 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cui, Qianling A1 - Yashchenok, Alexey A1 - Zhang, Lu A1 - Li, Lidong A1 - Masic, Admir A1 - Wienskol, Gabriele A1 - Moehwald, Helmuth A1 - Bargheer, Matias T1 - Fabrication of Bifunctional Gold/Gelatin Hybrid Nanocomposites and Their Application JF - ACS applied materials & interfaces N2 - Herein, a facile method is presented to integrate large gold nanoflowers (similar to 80 nm) and small gold nanoparticles (2-4 nm) into a single entity, exhibiting both surface-enhanced Raman scattering (SERS) and catalytic activity. The as-prepared gold nanoflowers were coated by a gelatin layer, in which the gold precursor was adsorbed and in situ reduced into small gold nanoparticles. The thickness of the gelatin shell is controlled to less than 10 nm, ensuring that the small gold nanoparticles are still in a SERS-active range of the inner Au core. Therefore, the reaction catalyzed by these nanocomposites can be monitored in situ using label-free SERS spectroscopy. In addition, these bifunctional nanocomposites are also attractive candidates for application in SERS monitoring of bioreactions because of their excellent biocompatibility. KW - core-shell nanostructure KW - gold KW - hybrid material KW - gelatin KW - nanoparticles KW - surface-enhanced Raman scattering Y1 - 2014 U6 - https://doi.org/10.1021/am5000068 SN - 1944-8244 VL - 6 IS - 3 SP - 1999 EP - 2002 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cui, Qianling A1 - Yashchenok, Alexey A1 - Li, Lidong A1 - Moehwald, Helmuth A1 - Bargheer, Matias T1 - Mechanistic study on reduction reaction of nitro compounds catalyzed by gold nanoparticles using in situ SERS monitoring JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - Surface-enhanced Raman scattering (SERS) spectroscopy has emerged in recent years as a promising and powerful technique to investigate the reaction mechanism of heterogeneous catalysis. In this work, the reduction reaction of 4-nitrothiophenol (4-NTP) to its corresponding amino derivate catalyzed by gold took place between the gold nanoshell and gold nanostar. Due to the strong binding of thiol group to the gold surface, the molecular configuration of 4-NTP was fixed with NO2 group towards outside. The direct contact of NO2 group with catalytic gold nanostars ensured the reduction reaction went smoothly, which was monitored by SERS spectroscopy. The NO2 vibration Raman band showed a unique blue-shift without any appearance of dimerization product, indicating this catalytic reaction might follow a monomolecular mechanistic pathway. (C) 2015 Elsevier B.V. All rights reserved. KW - Surface-enhanced Raman scattering KW - Heterogeneous catalysis KW - Gold nanoparticles KW - Reaction mechanism KW - Monomolecular reaction Y1 - 2015 U6 - https://doi.org/10.1016/j.colsurfa.2015.01.075 SN - 0927-7757 SN - 1873-4359 VL - 470 SP - 108 EP - 113 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cui, Qianling A1 - Xia, Bihua A1 - Mitzscherling, Steffen A1 - Masic, Admir A1 - Li, Lidong A1 - Bargheer, Matias A1 - Moehwald, Helmuth T1 - Preparation of gold nanostars and their study in selective catalytic reactions JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - In this work, gold nanostars (AuNSs) with size around 90 nm were prepared through an easy one-step method. They show excellent catalytic activity and large surface-enhanced Raman scattering (SERS) activity at the same time. Surprisingly, they exhibited different catalytic performance on the reduction of aromatic nitro compounds with different substituents on the para position. To understand such a difference, the SERS spectra were recorded, showing that the molecular orientation of reactants on the gold surface were different. We anticipate that this research will help to understand the relationship of the molecular orientation with the catalytic activity of gold nanoparticles. KW - Nanoparticles KW - Gold KW - Catalytic reaction KW - Surface enhanced Raman scattering (SERS) KW - Molecular orientation Y1 - 2015 U6 - https://doi.org/10.1016/j.colsurfa.2014.10.028 SN - 0927-7757 SN - 1873-4359 VL - 465 SP - 20 EP - 25 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - von Klitzing, Regine A1 - Stehl, Dimitrij A1 - Pogrzeba, Tobias A1 - SchomaƤcker, Reinhard A1 - Minullina, Renata A1 - Panchal, Abhishek A1 - Konnova, Svetlana A1 - Fakhrullin, Rawil A1 - Koetz, Joachim A1 - Moehwald, Helmuth A1 - Lvov, Yuri T1 - Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins JF - Advanced materials interfaces N2 - Halloysites as tubular alumosilicates are introduced as inexpensive natural nanoparticles to form and stabilize oil-water emulsions. This stabilized emulsion is shown to enable efficient interfacial catalytic reactions. Yield, selectivity, and product separation can be tremendously enhanced, e.g., for the hydroformylation reaction of dodecene to tridecanal. In perspective, this type of formulation may be used for oil spill dispersions. The key elements of the described formulations are clay nanotubes (halloysites) which are highly anisometric, can be filled by helper molecules, and are abundantly available in thousands of tons, making this technology scalable for industrial applications. Y1 - 2016 U6 - https://doi.org/10.1002/admi.201600435 SN - 2196-7350 VL - 4 IS - 1 PB - Wiley CY - Hoboken ER -