TY - JOUR A1 - Blankenburg, Stefanie A1 - Balfanz, Sabine A1 - Hayashi, Y. A1 - Shigenobu, S. A1 - Miura, T. A1 - Baumann, Otto A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Cockroach GABA(B) receptor subtypes: Molecular characterization, pharmacological properties and tissue distribution JF - Neuropharmacology N2 - gamma-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABA(A) receptors or metabotropic GABA(B) receptors. GABA(B) receptors regulate, via Gi/o, G-proteins, ion channels, and adenylyl cyclases. In humans, GABA(B) receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABA(B) receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABA(B) receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABA(B) receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABA(B) receptors act as autoreceptors in this neuron. KW - GABA(B) receptor KW - G-protein-coupled receptor KW - Periplaneta americana KW - Central nervous system KW - Adenylyl cyclase KW - Salivary gland Y1 - 2015 U6 - https://doi.org/10.1016/j.neuropharm.2014.08.022 SN - 0028-3908 SN - 1873-7064 VL - 88 SP - 134 EP - 144 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Blenau, Wolfgang T1 - Cellular actions of biogenic amines Y1 - 2005 ER - TY - THES A1 - Blenau, Wolfgang T1 - Aminerge Signaltransduktion bei Insekten T1 - Aminergic signal transduction in insects N2 - Biogene Amine sind kleine organische Verbindungen, die sowohl bei Wirbeltieren als auch bei Wirbellosen als Neurotransmitter, Neuromodulatoren und/oder Neurohormone wirken können. Sie bilden eine bedeutende Gruppe von Botenstoffen und entfalten ihre Wirkungen über die Bindung an eine bestimmte Klasse von Rezeptorproteinen, die als G-Protein-gekoppelte Rezeptoren bezeichnet werden. Bei Insekten gehören zur Substanzklasse der biogenen Amine die Botenstoffe Dopamin, Tyramin, Octopamin, Serotonin und Histamin. Neben vielen anderen Wirkung ist z.B. gezeigt worden, daß einige dieser biogenen Amine bei der Honigbiene (Apis mellifera) die Geschmacksempfindlichkeit für Zuckerwasser-Reize modulieren können. Ich habe verschiedene Aspekte der aminergen Signaltransduktion an den „Modellorganismen“ Honigbiene und Amerikanische Großschabe (Periplaneta americana) untersucht. Aus der Honigbiene, einem „Modellorganismus“ für das Studium von Lern- und Gedächtnisvorgängen, wurden zwei Dopamin-Rezeptoren, ein Tyramin-Rezeptor, ein Octopamin-Rezeptor und ein Serotonin-Rezeptor charakterisiert. Die Rezeptoren wurden in kultivierten Säugerzellen exprimiert, um ihre pharmakologischen und funktionellen Eigenschaften (Kopplung an intrazelluläre Botenstoffwege) zu analysieren. Weiterhin wurde mit Hilfe verschiedener Techniken (RT-PCR, Northern-Blotting, in situ-Hybridisierung) untersucht, wo und wann während der Entwicklung die entsprechenden Rezeptor-mRNAs im Gehirn der Honigbiene exprimiert werden. Als Modellobjekt zur Untersuchung der zellulären Wirkungen biogener Amine wurden die Speicheldrüsen der Amerikanischen Großschabe genutzt. An isolierten Speicheldrüsen läßt sich sowohl mit Dopamin als auch mit Serotonin Speichelproduktion auslösen, wobei Speichelarten unterschiedlicher Zusammensetzung gebildet werden. Dopamin induziert die Bildung eines völlig proteinfreien, wäßrigen Speichels. Serotonin bewirkt die Sekretion eines proteinhaltigen Speichels. Die Serotonin-induzierte Proteinsekretion wird durch eine Erhöhung der Konzentration des intrazellulären Botenstoffs cAMP vermittelt. Es wurden die pharmakologischen Eigenschaften der Dopamin-Rezeptoren der Schaben-Speicheldrüsen untersucht sowie mit der molekularen Charakterisierung putativer aminerger Rezeptoren der Schabe begonnen. Weiterhin habe ich das ebony-Gen der Schabe charakterisiert. Dieses Gen kodiert für ein Enzym, das wahrscheinlich bei der Schabe (wie bei anderen Insekten) an der Inaktivierung biogener Amine beteiligt ist und im Gehirn und in den Speicheldrüsen der Schabe exprimiert wird. N2 - Biogenic amines are small organic compounds that act as neurotransmitters, neuromodulators and/or neurohormones in vertebrates and in invertebrates. They form an important group of messenger substances and mediate their diverse effects by binding to membrane receptors that primarily belong to the large gene-family of G protein-coupled receptors. In insects, the group of biogenic amine messengers consists of five members: dopamine, tyramine, octopamine, serotonin, and histamine. Besides many other effects, some of these biogenic amines were shown, for example, to modulate gustatory sensitivity to sucrose stimuli in the honeybee (Apis mellifera). I have investigated various aspects of the aminergic signal transduction in the “model organisms” honeybee and American cockroach (Periplaneta americana). So far, I have characterized two dopamine receptors, a tyramine receptor, an octopamine receptor and a serotonin receptor of the honeybee, which is well-known for its learning and memory capacities. The receptors where expressed in cultivated mammalian cells in order to analyze their pharmacological and functional (i.e., second messenger coupling) properties. The spatiotemporal expression patterns of the respective receptor mRNA were investigated in the honeybee brain by using different techniques (RT PCR, Northern blotting, in situ-hybridization). The salivary glands of the American cockroach were used as a model object in order to investigate the cellular effects of biogenic amines. Both dopamine and serotonin trigger salivary secretion in isolated salivary glands. The quality of the secreted saliva is, however, different. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Serotonin-induced protein secretion is mediated by an increase in the intracellular concentration of cAMP. The pharmacological properties of dopamine receptors associated with cockroach salivary glands were investigated and the molecular characterization of putative aminergic receptors of the cockroach was initiated. Furthermore, I have characterized the ebony gene of the cockroach. This gene encodes an enzyme that is probably involved in the inactivation of biogenic amines in the cockroach (as in other insects). The ebony gene is expressed in the brain and in the salivary glands of the cockroach. KW - Neurotransmitter-Rezeptor KW - Dopamin KW - Tyramin KW - Octopamin KW - Serotonin KW - Insekten KW - Biene KW - Amerikanische Schabe KW - Biogene Amine KW - G-Protein-gekoppelte-Rezeptoren KW - biogenic amines KW - G protein-coupled receptors KW - honeybee KW - salivary gland Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7568 ER - TY - JOUR A1 - Blenau, Wolfgang A1 - Baumann, Arnd T1 - Molecular characterization of the ebony gene from the American cockroach, Periplaneta americana N2 - Biogenic amines are an important class of primary messengers in the central (CNS) and peripheral nervous systems and in peripheral organs. These substances regulate and modulate many physiological and behavioral processes. Various inactivation mechanisms for these substances exist to terminate biogenic amine-mediated signal transduction. In vertebrates, the enzymes monoamine oxidase and/or catechol-O-methyl-transferase are involved in these processes. In insects, however, in which both enzymes are low in abundance or absent, biogenic amines are inactivated mainly by N- acetylation or O-sulphation. In Droso-philo, beta-alanyl conjugation mediated by the Ebony protein has recently been shown to be a novel and alternative pathway for biogenic amine inactivation. Here, we report the cloning of ebony cDNA (Peaebony) from a brain-specific cDNA library of the cockroach Periplaneta americana. The open reading frame encodes a protein of 860 amino acid residues (PeaEbony). The PeaEbony polypeptide shares homology to Ebony sequences from Anopheles gambiae, Apis mellifera, and Drosophila melonogaster. In addition, PeaEbony exhibits sequence similarity to a family of microbial non-ribosomal peptide synthetases. The mRNA encoding PeaEbony is highly expressed in the cockroach brain and to a lesser extent in the salivary glands. PeaEbony is, therefore, probably involved in the inactivation of various biogenic amines through beta-alanyl conjugation in the cockroach CNS. Since the salivary glands in Periplaneta are innervated by dopaminergic and serotonergic neurons, PeaEbony probably also biochemically modifies dopamine and serotonin in these acinar glands. Arch. Insect Biochem. (c) 2005 Wiley-Liss, Inc Y1 - 2005 ER - TY - JOUR A1 - Blenau, Wolfgang A1 - Baumann, Arnd T1 - Molecular and pharmacological properties of insect biogenic amine receptors : lessons from Drosophila melanogaster and Apis mellifera Y1 - 2001 SN - 0739-4462 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Baumann, Arnd T1 - Aminergic signal transduction in invertebrates : focus on tyramine and octopamine receptors N2 - Electro-chemical signal transduction is the basis of communication between n eurons and their target cells. An important group of neuroactive substances that are released by action potentials from neurons are the biogenic amines. These a re small organic molecules that bind to specific receptors located in the target cell membrane. Once activated these receptors cause changes in the intracellula r concentration of second messengers, i.e. cyclic nucleotides, phosphoinositides , or Ca2+, leading to slow but long-lasting cellular responses. Biochemical, pha rmacological, physiological, and molecular biological approaches have unequivoca lly shown that biogenic amines are important regulators of cellular function in both vertebrates and invertebrates. In this review, we will concentrate on the p roperties of two biogenic amines and their receptors that were originally identi fied in invertebrates: tyramine and octopamine.  T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 107 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44271 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Grohmann, Lore A1 - Erber, Joachim A1 - Ebert, Paul R. A1 - Strünker, Timo A1 - Baumann, Arnd T1 - Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain N2 - Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions. KW - Biogenic amine KW - Ca2+ KW - cyclic AMP KW - G protein-coupled receptor KW - insect Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44293 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Hauser, Frank A1 - Cazzamali, Giuseppe A1 - Williamson, Michael A1 - Grimmelikhuijzen, Cornelis J. P. T1 - A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera N2 - G protein-coupled receptor (GPCR) genes are large gene families in every animal, sometimes making up to 1-2% of the animal's genome. Of all insect GPCRs, the neurohormone (neuropeptide, protein hormone, biogenic amine) GPCRs are especially important, because they, together with their ligands, occupy a high hierarchic position in the physiology of insects and steer crucial processes such as development, reproduction, and behavior. In this paper, we give a review of our current knowledge on Drosophila melanogaster GPCRs and use this information to annotate the neurohormone GPCR genes present in the recently sequenced genome from the honey bee Apis mellifera. We found 35 neuropeptide receptor genes in the honey bee (44 in Drosophila) and two genes, coding for leucine-rich repeats-containing protein hormone GPCRs (4 in Drosophila). In addition, the honey bee has 19 biogenic amine receptor genes (21 in Drosophila). The larger numbers of neurohormone receptors in Drosophila are probably due to gene duplications that occurred during recent evolution of the fly. Our analyses also yielded the likely ligands for 40 of the 56 honey bee neurohormone GPCRs identified in this study. In addition, we made some interesting observations on neurohormone GPCR evolution and the evolution and co-evolution of their ligands. For neuropeptide and protein hormone GPCRs, there appears to be a general co-evolution between receptors and their ligands. This is in contrast to biogenic amine GPCRs, where evolutionarily unrelated GPCRs often bind to the same biogenic amine, suggesting frequent ligand exchanges ("ligand hops") during GPCR evolution. (c) 2006 Elsevier Ltd. All rights reserved. KW - GPCR KW - neuropeptide KW - neurohormone KW - hormone KW - biogenic amine Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44326 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Mustard, Julie A. A1 - Hamilton, Ingrid S. A1 - Ward, Vernon K. A1 - Ebert, Paul R. A1 - Mercer, Alison R. T1 - Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activity N2 - Dopamine is found in many invertebrate organisms, including insects, however, the mechanisms through which this amine operates remain unclear. We have expressed two dopamine receptors cloned from honey bee (AmDOP1 and AmDOP2) in insect cells (Spodoptera frugiperda), and compared their pharmacology directly using production of cAMP as a functional assay. In each assay, AmDOP1 receptors required lower concentrations of dopamine and 6,7-ADTN for maximal activation than AmDOP2 receptors. Conversely, butaclamol and cis(Z)-flupentixol were more potent at blocking the cAMP response mediated through AmDOP2 than AmDOP1 receptors. Expression of AmDOP1, but not AmDOP2, receptors significantly increased levels of cAMP even in the absence of ligand. This constitutive activity was blocked by cis(Z)-flupentixol. This work provides the first evidence of a constitutively activated dopamine receptor in invertebrates and suggests that although AmDOP1 and AmDOP2 share much less homology than their vertebrate counterparts, they display a number of functional parallels with the mammalian D1-like dopamine receptors. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 109 KW - G protein-coupled receptor KW - Biogenic amine KW - Invertebrate KW - cAMP KW - Baculovirus Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44378 ER - TY - GEN A1 - Blenau, Wolfgang A1 - Rotte, Cathleen A1 - Krach, Christian A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Walz, Bernd T1 - Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana) N2 - The phenolamines octopamine and tyramine control, regulate, and modulate many physiological and behavioral processes in invertebrates. Vertebrates possess only small amounts of both substances, and thus, octopamine and tyramine, together with other biogenic amines, are referred to as “trace amines.” Biogenic amines evoke cellular responses by activating G-protein-coupled receptors. We have isolated a complementary DNA (cDNA) that encodes a biogenic amine receptor from the American cockroach Periplaneta americana, viz., Peatyr1, which shares high sequence similarity to members of the invertebrate tyramine-receptor family. The PeaTYR1 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with tyramine reduces adenylyl cyclase activity in a dose-dependent manner (EC50 350 nM). The inhibitory effect of tyramine is abolished by co-incubation with either yohimbine or chlorpromazine. Receptor expression has been investigated by reverse transcription polymerase chain reaction and immunocytochemistry. The mRNA is present in various tissues including brain, salivary glands, midgut, Malpighian tubules, and leg muscles. The effect of tyramine on salivary gland acinar cells has been investigated by intracellular recordings, which have revealed excitatory presynaptic actions of tyramine. This study marks the first comprehensive molecular, pharmacological, and functional characterization of a tyramine receptor in the cockroach. KW - Biogenic amine KW - cellular signaling KW - G-protein-coupled receptor KW - octopamine KW - salivary gland Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44335 ER -