TY - JOUR A1 - Schwarze, Thomas A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Cleve, Ernst A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Jürgen T1 - Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement N2 - The [6.6](9,10)anthracenophane 1 (Scheme 1) is a selective fluoroionophore for the detection of PdCl2 with a large fluorescence enhancement factor (I/I-0 > 250). Y1 - 2010 UR - http://pubs.rsc.org/en/content/articlehtml/2010/cc/b919973j U6 - https://doi.org/10.1039/B919973j SN - 1359-7345 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Dosche, Carsten A1 - Flehr, Roman A1 - Klamroth, Tillmann A1 - Löhmannsröben, Hans-Gerd A1 - Saalfrank, Peter A1 - Cleve, Ernst A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Jürgen T1 - Combination of a CT modulated PET and an intramolecular excimer formation to quantify PdCl2 by large fluorescence enhancement Y1 - 2010 UR - http://www.rsc.org/ej/CC/2010/b919973j.pdf SN - 1359-7345 ER - TY - JOUR A1 - Spannenberg, A. A1 - Buschmann, Hans-Jürgen A1 - Holdt, Hans-Joachim A1 - Schollmeyer, E. T1 - Complex formation of noncyclic, monocyclic and bicyclic ligands with nickel(II) and cobalt(II) in acetonitrile N2 - Equilibrium constants and thermodynamic parameters for the complexation of nickel(II) and cobalt(II) by noncyclic, monocyclic and bicyclic ligands in acetonitrile have been determined by calorimetric titrations. The donor atoms and the ring size of the ligands play an important role for the stabilities of the complexes formed. An increasing number of nitrogen atoms in the crown ether favours complex formation. The number of nitrogen donor atoms of the macro- cyclic ligands examined has a direct influence on the values of the reaction enthalpies. Keywords: Complex formation; crown ethers; azacrown ethers; thiacrown ethers; cryptands; acetonitrile Y1 - 1999 SN - 0095-8972 ER - TY - JOUR A1 - Jansen, K. A1 - Buschmann, Hans-Jürgen A1 - Wego, A. A1 - Dopp, D. A1 - Mayer, C. A1 - Holdt, Hans-Joachim A1 - Schollmeyer, E. T1 - Curcubit[5]uril, decamethylcururbit[5]uril and curcurbit[6]uril : synthesis, solubility and amin complex formation N2 - A simple way to prepare cucurbit[5]uril is described. The macrocycles of the cucurbituril type are nearly insoluble in water. The solubilities of cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril in hydrochloric acid, formic acid and acetic acid of different concentrations have been investigated. Due to the formation of complexes between cucurbit[n]urils and protons the solubility increases in aqueous acids. The macrocyclic ligands are able to form complexes with several organic compounds. Thus, the complex formation of the cucurbituril macrocycles with different amines has beenstudied by means of calorimetric titrations. The reaction enthalpy gives noevidence of the formation of inclusion or exclusion complexes. 1H-NMR measurements show that in the case of cucurbit[5]uril and cucurbit[6]uril the organic guest compound is included within the hydrophobic cavity. Decamethylcucurbit[5]uril forms only exclusion complexes with organicamines. This was confirmed by the crystal structure of the decamethylcucurbit[5]uril-1,6- diaminohexane complex. complex formation - cucurbit[5]uril - cucurbit[6]uril - decamethylcucurbit[5]uril - solubility - synthesis Y1 - 2001 ER - TY - JOUR A1 - Dudek, Melanie A1 - Clegg, Jack K. A1 - Glasson, Christopher R. K. A1 - Kelly, Norman A1 - Gloe, Kerstin A1 - Gloe, Karsten A1 - Kelling, Alexandra A1 - Buschmann, Hans-Jürgen A1 - Jolliffe, Katrina A. A1 - Lindoy, Leonard F. A1 - Meehan, George V. T1 - Interaction of Copper(II) with Ditopic Pyridyl-beta-diketone Ligands dimeric, framework, and metallogel structures JF - Crystal growth & design : integrating the fields of crystal engineering and crystal growth for the synthesis and applications of new materials N2 - The interaction of Cu(II) with three beta-diketone ligands of type R(1)C(O)CH(2)C(O)R(2) (where R(1) = 2-, 3-, or 4-pyridyl and R(2) = C(6)H(5), respectively), HL(1)-HL(3), along with the X-ray structures and the pK(a) values of each ligand, are reported. HL(1) yields a dimeric complex of type [Cu(L(1))(2)](2). In this structure, two deprotonated HL(1) ligands coordinate in a trans planar fashion around each Cu(II) center, one oxygen from each CuL(2) unit bridges to an axial site of the second complex unit such that both Cu(II) centers attain equivalent five-coordinate square pyramidal geometries. The two-substituted pyridyl groups in this complex do not coordinate, perhaps reflecting steric factors associated with the closeness of the pyridyl nitrogen to the attached (conjugated) beta-diketonato backbone of each ligand. The remaining two Cu(II) species, derived from HL(2) and HL(3), are both coordination polymers of type [Cu(L)(2)](n) in which the terminal pyridine group of each ligand is intermolecularly linked to an adjacent copper center to generate the respective infinite structures. HL(2) was also demonstrated to form a fibrous metallogel when reacted with CuCl(2) in an acetonitrile/water mixture under defined conditions. Y1 - 2011 U6 - https://doi.org/10.1021/cg101629w SN - 1528-7483 VL - 11 IS - 5 SP - 1697 EP - 1704 PB - American Chemical Society CY - Washington ER -