TY - JOUR A1 - Fiener, P. A1 - Wilken, F. A1 - Aldana-Jague, E. A1 - Deumlich, D. A1 - Gomez, J. A. A1 - Guzman, G. A1 - Hardy, R. A. A1 - Quinton, J. N. A1 - Sommer, M. A1 - Van Oost, K. A1 - Wexler, R. T1 - Uncertainties in assessing tillage erosion BT - how appropriate are our measuring techniques? JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 x 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 039 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = -26 +/- 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost optimal conditions, are subject to major uncertainties that are far from negligible. (C) 2018 Elsevier B.V. All rights reserved. KW - Tillage erosion KW - Tracer KW - UAS KW - TLS KW - Method comparison KW - Measurement uncertainty Y1 - 2018 U6 - https://doi.org/10.1016/j.geomorph.2017.12.031 SN - 0169-555X SN - 1872-695X VL - 304 SP - 214 EP - 225 PB - Elsevier CY - Amsterdam ER -