TY - GEN A1 - Müller, Bernd Randolf A1 - Kupsch, Andreas A1 - Laquai, Rene A1 - Nellesen, Jens A1 - Tillmann, Wolfgang A1 - Kasperovich, Galina A1 - Bruno, Giovanni T1 - Microstructure Characterisation of Advanced Materials via 2D and 3D X-Ray Refraction Techniques T2 - Materials Science Forum N2 - 3D imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this conference paper we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution in an Al/Al2O3 metal matrix composite during tensile load and the identification of void formation (different kinds of defects, particularly unsintered powder hidden in pores, and small inhomogeneity’s like cracks) in Ti64 parts produced by selective laser melting using synchrotron X-ray refraction radiography and tomography. KW - X-ray refraction KW - radiography KW - tomography KW - synchrotron X-ray refraction radiography KW - CT KW - microscopy KW - creep KW - porosity KW - damage evolution KW - additive manufacturing KW - metal matrix composite Y1 - 2018 SN - 978-3-0357-1208-7 U6 - https://doi.org/10.4028/www.scientific.net/MSF.941.2401 SN - 0255-5476 VL - 941 SP - 2401 EP - 2406 PB - Trans Tech Publications Ltd CY - Zurich ER -