TY - JOUR A1 - Bär, Markus A1 - Großmann, Robert A1 - Heidenreich, Sebastian A1 - Peruani, Fernando T1 - Self-propelled rods BT - insights and perspectives for active matter JF - Annual review of condensed matter physics N2 - A wide range of experimental systems including gliding, swarming and swimming bacteria, in vitro motility assays, and shaken granular media are commonly described as self-propelled rods. Large ensembles of those entities display a large variety of self-organized, collective phenomena, including the formation of moving polar clusters, polar and nematic dynamic bands, mobility-induced phase separation, topological defects, and mesoscale turbulence, among others. Here, we give a brief survey of experimental observations and review the theoretical description of self-propelled rods. Our focus is on the emergent pattern formation of ensembles of dry self-propelled rods governed by short-ranged, contact mediated interactions and their wet counterparts that are also subject to long-ranged hydrodynamic flows. Altogether, self-propelled rods provide an overarching theme covering many aspects of active matter containing well-explored limiting cases. Their collective behavior not only bridges the well-studied regimes of polar selfpropelled particles and active nematics, and includes active phase separation, but also reveals a rich variety of new patterns. KW - collective motion KW - statistical physics KW - biological physics KW - nonequilibrium physics KW - stochastic processes Y1 - 2019 U6 - https://doi.org/10.1146/annurev-conmatphys-031119-050611 SN - 1947-5454 SN - 1947-5462 VL - 11 SP - 441 EP - 466 PB - Annual Reviews CY - Palo Alto ER -