TY - JOUR A1 - Kleinpeter, Erich A1 - Seidl, Peter Rudolf T1 - The gamma- and the delta-effects in C-13 NMR spectroscopy in terms of nuclear chemical shielding (NCS) analysis N2 - Carbon-13 NMR is widely used in the determination of the stereochemistry of organic compounds. Changes in chemical shifts caused by interactions of groups that are close in space normally result in shielding of the carbon and deshielding of the hydrogen nuclei that are involved. This is not always the case, however, and further work on the origin of these effects would be desirable. Early applications of theoretical methods to the study of NMR shielding parameters were not particularly successful, but in recent years, the calculation of NMR shielding parameters by theoretical methods has developed into a useful and popular tool for structural studies by NMR. A promising approach to the problem of distinguishing and evaluating stereochemical influences on carbon and hydrogen chemical shifts is provided by natural chemical shielding (NCS) analysis. This method allows a partitioning of theoretical NMR shieldings into magnetic contributions from bonds and lone pairs of the molecule using the natural bond orbital (NBO) method. In order to investigate the origins of steric effects, we employed the NCS analysis to axial/equatorial-Me-cyclohexane, norbornane and exo/endo-Me-norbornane, in addition to n-pentane in the anti, gauche and g(P) g(M) conformations. Our results indicate that distortions in molecular structure due to steric effects can result in bond stretching or compression or in angular distortions. Changes in bond lengths result in the predictable shielding or deshielding of the nuclei that are involved. Where the molecular framework may be distorted to alleviate strain, chemical shifts appear to reflect changes in angles. Copyright (C) 2004 John Wiley Sons, Ltd Y1 - 2004 ER -