TY - JOUR A1 - Roy, Hans A1 - Kallmeyer, Jens A1 - Adhikari, Rishi Ram A1 - Pockalny, Robert A1 - Jorgensen, Bo Barker A1 - D'Hondt, Steven T1 - Aerobic microbial respiration in 86-million-year-old deep-sea red clay JF - Science N2 - Microbial communities can subsist at depth in marine sediments without fresh supply of organic matter for millions of years. At threshold sedimentation rates of 1 millimeter per 1000 years, the low rates of microbial community metabolism in the North Pacific Gyre allow sediments to remain oxygenated tens of meters below the sea floor. We found that the oxygen respiration rates dropped from 10 micromoles of O-2 liter(-1) year(-1) near the sediment-water interface to 0.001 micromoles of O-2 liter(-1) year(-1) at 30-meter depth within 86 million-year-old sediment. The cell-specific respiration rate decreased with depth but stabilized at around 10(-3) femtomoles of O-2 cell(-1) day(-1) 10 meters below the seafloor. This result indicated that the community size is controlled by the rate of carbon oxidation and thereby by the low available energy flux. Y1 - 2012 U6 - https://doi.org/10.1126/science.1219424 SN - 0036-8075 VL - 336 IS - 6083 SP - 922 EP - 925 PB - American Assoc. for the Advancement of Science CY - Washington ER -