TY - JOUR A1 - Zehbe, Rolf A1 - Zaslansky, Paul A1 - Mochales, Carolina A1 - Mueller, Wolf-Dieter A1 - Fleck, Claudia T1 - Synchrotron micro tomographic evaluation of multilayered zirconia ceramics-Volumetric effects after indentation JF - Journal of the European Ceramic Society N2 - Electrophoretic deposition was used to produce zirconia specimen consisting of alternating layers of fully stabilized cubic zirconia and partially stabilized tetragonal zirconia. In this configuration, the tetragonal stabilized zirconia layers can undergo transformation toughening upon mechanical induced stresses, while the cubic stabilized layers can act as confining element. To understand the volumetric changes due to transformation toughening in these layered materials after indentation, we used an advanced synchrotron-based X-ray mu CT setup and compared the results with surface sensitive methods like Raman spectroscopy, AFM and white light interferometry. The high spatial resolution and the adapted beam energy between the absorption edges of zirconia and yttria allowed discriminating between individual layers due to differences in their yttria content. Furthermore we were able to identify single indents and link volume changes to different physical effects in the different stabilized zirconia parts and visualize the three dimensional volume around only few micrometre sized indents. (C) 2015 Elsevier Ltd. All rights reserved. KW - Yttria stabilized zirconia multilayers KW - X-ray mu CT KW - Electrophoretic deposition KW - Transformation toughening Y1 - 2016 U6 - https://doi.org/10.1016/j.jeurceramsoc.2015.09.015 SN - 0955-2219 SN - 1873-619X VL - 36 SP - 171 EP - 177 PB - Elsevier CY - Oxford ER -