TY - JOUR A1 - Rottler, Erwin A1 - Vormoor, Klaus Josef A1 - Francke, Till A1 - Warscher, Michael A1 - Strasser, Ulrich A1 - Bronstert, Axel T1 - Elevation-dependent compensation effects in snowmelt in the Rhine River Basin upstream gauge Basel JF - Hydrology research : an international journal / Nordic Association of Hydrology ; British Hydrological Society N2 - In snow-dominated river basins, floods often occur during early summer, when snowmelt-induced runoff superimposes with rainfall-induced runoff. An earlier onset of seasonal snowmelt as a consequence of a warming climate is often expected to shift snowmelt contribution to river runoff and potential flooding to an earlier date. Against this background, we assess the impact of rising temperatures on seasonal snowpacks and quantify changes in timing, magnitude and elevation of snowmelt. We analyse in situ snow measurements, conduct snow simulations and examine changes in river runoff at key gauging stations. With regard to snowmelt, we detect a threefold effect of rising temperatures: snowmelt becomes weaker, occurs earlier and forms at higher elevations. Due to the wide range of elevations in the catchment, snowmelt does not occur simultaneously at all elevations. Results indicate that elevation bands melt together in blocks. We hypothesise that in a warmer world with similar sequences of weather conditions, snowmelt is moved upward to higher elevation. The movement upward the elevation range makes snowmelt in individual elevation bands occur earlier, although the timing of the snowmelt-induced runoff stays the same. Meltwater from higher elevations, at least partly, replaces meltwater from elevations below. KW - compensation effects KW - elevation-dependency KW - Rhine River KW - snowmelt KW - timing Y1 - 2021 U6 - https://doi.org/10.2166/nh.2021.092 SN - 2224-7955 VL - 52 IS - 2 SP - 536 EP - 557 PB - IWA Publ. CY - London ER -