TY - JOUR A1 - Xiao, Shangbin A1 - Liu, Liu A1 - Wang, Wei A1 - Lorke, Andreas A1 - Woodhouse, Jason Nicholas A1 - Grossart, Hans-Peter T1 - A Fast-Response Automated Gas Equilibrator (FaRAGE) for continuous in situ measurement of CH4 and CO2 dissolved in water JF - Hydrology and earth system sciences : HESS N2 - Biogenic greenhouse gas emissions, e.g., of methane (CH4) and carbon dioxide (CO2) from inland waters, contribute substantially to global warming. In aquatic systems, dissolved greenhouse gases are highly heterogeneous in both space and time. To better understand the biological and physical processes that affect sources and sinks of both CH4 and CO2, their dissolved concentrations need to be measured with high spatial and temporal resolution. To achieve this goal, we developed the Fast-Response Automated Gas Equilibrator (FaRAGE) for real-time in situ measurement of dissolved CH4 and CO2 concentrations at the water surface and in the water column. FaRAGE can achieve an exceptionally short response time (t(95%) = 12 s when including the response time of the gas analyzer) while retaining an equilibration ratio of 62.6% and a measurement accuracy of 0.5% for CH4. A similar performance was observed for dissolved CO2 (t(95%) = 10 s, equilibration ratio 67.1 %). An equilibration ratio as high as 91.8% can be reached at the cost of a slightly increased response time (16 s). The FaRAGE is capable of continuously measuring dissolved CO2 and CH4 concentrations in the nM-to-submM (10(-9)-10(-3) mol L-1) range with a detection limit of subnM (10(-10) mol L-1), when coupling with a cavity ring-down greenhouse gas analyzer (Picarro GasScouter). FaRAGE allows for the possibility of mapping dissolved concentration in a "quasi" three-dimensional manner in lakes and provides an inexpensive alternative to other commercial gas equilibrators. It is simple to operate and suitable for continuous monitoring with a strong tolerance for suspended particles. While the FaRAGE is developed for inland waters, it can be also applied to ocean waters by tuning the gas-water mixing ratio. The FaRAGE is easily adapted to suit other gas analyzers expanding the range of potential applications, including nitrous oxide and isotopic composition of the gases. Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-3871-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 7 SP - 3871 EP - 3880 PB - European Geosciences Union (EGU) ; Copernicus CY - Munich ER -