TY - JOUR A1 - Soeriyadi, Angela H. A1 - Ongley, Sarah E. A1 - Kehr, Jan-Christoph A1 - Pickford, Russel A1 - Dittmann, Elke A1 - Neilan, Brett A. T1 - Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase JF - ChemBioChem N2 - Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein. KW - a domain KW - indolactams KW - MbtH KW - natural products KW - teleocidin Y1 - 2021 U6 - https://doi.org/10.1002/cbic.202100574 SN - 1439-4227 SN - 1439-7633 VL - 23 IS - 3 PB - Wiley-VCH CY - Weinheim ER -