Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-52947 Wissenschaftlicher Artikel De Frenne, Pieter; Blondeel, H.; Brunet, J.; Caron, M. M.; Chabrerie, O.; Cougnon, M.; Cousins, S. A. O.; Decocq, G.; Diekmann, M.; Graae, B. J.; Hanley, M. E.; Heinken, Thilo; Hermy, M.; Kolb, A.; Lenoir, J.; Liira, J.; Orczewska, A.; Shevtsova, A.; Vanneste, T.; Verheyen, K. Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences. Hoboken Wiley 2018 8 Plant biology 20 3 619 626 10.1111/plb.12688 Institut für Biochemie und Biologie OPUS4-4416 misc Wulf, Monika; Heinken, Thilo Colonization of recent coniferous versus deciduous forest stands by vascular plants at the local scale Questions: 1. Are there differences among species in their preference for coniferous vs. deciduous forest? 2. Are tree and shrub species better colonizers of recent forest stands than herbaceous species? 3. Do colonization patterns of plant species groups depend on tree species composition? Location: Three deciduous and one coniferous recent forest areas in Brandenburg, NE Germany. Methods: In 34 and 21 transects in coniferous and deciduous stands, respectively, we studied the occurrence and percentage cover of vascular plants in a total of 150 plots in ancient stands, 315 in recent stands and 55 at the ecotone. Habitat preference, diaspore weight, generative dispersal potential and clonal extension were used to explain mechanisms of local migration. Regression analysis was conducted to test whether migration distance was related to species' life-history traits. Results: 25 species were significantly associated with ancient stands and ten species were significantly more frequent in recent stands. Tree and shrub species were good colonizers of recent coniferous and deciduous stands. In the coniferous stands, all herbaceous species showed a strong dispersal limitation during colonization, whereas in the deciduous stands generalist species may have survived in the grasslands which were present prior to afforestation. Conclusions: The fast colonization of recent stands by trees and shrubs can be explained by their effective dispersal via wind and animals. This, and the comparably efficient migration of herbaceous forest specialists into recent coniferous stands, implies that the conversion of coniferous into deciduous stands adjacent to ancient deciduous forests is promising even without planting of trees. 2008 urn:nbn:de:kobv:517-opus-46080 Institut für Biochemie und Biologie OPUS4-4456 misc Heinken, Thilo Die natürlichen Kiefernstandorte Deutschlands und ihre Gefährdung Natürliche Standorte der Waldkiefer gibt es in Deutschland nur kleinflächig. Während Kiefernforste anstelle natürlicher Laubwälder heute oft landschaftsprägend sind, bildet die konkurrenzschwache und lichtbedürftige Kiefer ausschließlich auf extrem trockenen oder nassen, nährstoffarmen Standorten naturnahe Schlusswaldgesellschaften. Regionale Schwerpunkte liegen in subkontinentalen Regionen wie dem nordostdeutschen Tiefland und Bayern, ein „natürliches Kiefernareal" lässt sich aber kaum abgrenzen. An der Trockengrenze des Waldes finden sich auf Kalk- und Dolomitgesteinen artenreiche Karbonat-Trockenkiefernwälder mit Elementen der alpinen Rasen und Kalkmagerrasen in der Bodenvegetation. Diese Wälder besiedeln steile, südexponierte Felsen und morphodynamisch aktive Bereiche wie Rutschhänge und FlussSchotterböden im Umkreis der Alpen, kommen aber auch in den Mittelgebirgen vor. Ihr Gegenstück auf sauren Standorten sind die Sand- und Silikat-Kiefernwälder der Quarzsande und Sandstein-Verwitterungsböden, deren Bodenvegetation durch Zwergsträucher, Moose und Strauchflechten geprägt ist. Hier siedelt die Kiefer in den Tieflagen besonders auf Binnendünen und Sandern, aber auch auf Küstendünen der Ostsee, in den Mittelgebirgen z. B. auf den Sandsteinriffen der Sächsischen Schweiz. Der dritte Wuchsbereich natürlicher Kiefernwälder sind saure, nährstoffarme Moore, die ganz überwiegend von Regenwasser gespeist werden. Auch die Kiefern-Moorwälder sind in Nordostdeutschland und Bayern am häufigsten. Von diesen Standorten ausgehend, wo ihr Platz kaum von anderen Baumarten streitig gemacht wird, tritt die Waldkiefer immer wieder als Pionier auf weniger extremen Standorten auf. In der Naturlandschaft kam dies etwa nach Waldbränden oder Stürmen vor, doch der Mensch förderte die Kiefer durch Auflichtung der Wälder, Waldweide und Streunutzung stark. Auch die damit verbundene Nährstoffverarmung macht eine exakte Abgrenzung natürlicher Kiefernstandorte unmöglich. Die schlechtwüchsigen und forstwirtschaftlich nicht interessanten, ästhetisch aber sehr ansprechenden natürlichen Kiefernbestände sind heute vor allem durch Stickstoff-Immissionen gefährdet. Trotz ihrer oft kargen Erscheinung besitzen sie einen hohen Wert für die Biodiversität und den Artenschutz. Neben bodenbewohnenden Flechten und regionalen Relikt-Endemiten ist vor allem die in den letzten Jahrzehnten zunehmend gefährdete Vielfalt an Mykorrhiza-Pilzen hervorzuheben, die der Kiefer das Leben auf extrem nährstoffarmen Standorten überhaupt ermöglichen. Abschließend werden mögliche Schutz- bzw. Regenerationsmaßnahmen wie das Abplaggen flechtenreicher Kiefernstandorte vorgestellt. 2008 urn:nbn:de:kobv:517-opus-46506 Institut für Biochemie und Biologie OPUS4-48325 Wissenschaftlicher Artikel Schöpke, Benito; Heinze, Johannes; Pätzig, Marlene; Heinken, Thilo Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats? The effects of habitat fragmentation and isolation on plant species richness have been verified for a wide range of anthropogenically fragmented habitats, but there is currently little information about their effects in naturally small and isolated habitats. We tested whether habitat area, heterogeneity, and isolation affect the richness of wetland vascular plant species in kettle holes, i.e., small glacially created wetlands, in an agricultural landscape of 1 km(2) in NE Germany. We compared fragmentation effects with those of forest fragments in the same landscape window. Since wetland and forest species might differ in their tolerance to isolation, and because isolation effects on plant species may be trait dependent, we asked which key life history traits might foster differences in isolation tolerance between wetland and forest plants. We recorded the flora and vegetation types in 83 isolated sites that contained 81 kettle holes and 25 forest fragments. Overall, the number of wetland species increased with increasing area and heterogeneity, i.e., the number of vegetation types, while area was not a surrogate for heterogeneity in these naturally fragmented systems. Isolation did not influence the number of wetland species but decreased the number of forest species. We also found that seeds of wetland species were on average lighter, more persistent and better adapted to epizoochory, e.g., by waterfowl, than seeds of forest species. Therefore, we suggest that wetland species are more tolerant to isolation than forest species due to their higher dispersal potential in space and time, which may counterbalance the negative effects of isolation. Dordrecht Springer 2019 15 Plant ecology : an international journal 220 9 801 815 10.1007/s11258-019-00955-8 Institut für Biochemie und Biologie OPUS4-514 misc Heinken, Thilo; Raudnitschka, Dorit Do wild ungulates contribute to the dispersal of vascular plants in central European forests by epizoochory? The external dispersal ("epizoochory") of vascular plant diaspores (seeds and fruits) by roe deer and wild boar, i.e. the most common wild large mammals with a large home range in central Europe, was investigated in a 6.5-km² forest area in NE Germany dominated by mesic deciduous forests. The study involved brushing out the diaspores from the coats and hooves of 25 shot roe deer and nine wild boar. The results were compared with the forest vegetation of the study area. Whilst wild boar transported large amounts of various diaspores in the coat, the significance of roe deer for epizoochory was low due to their sleek fur and different behaviour compared to wild boar. Altogether, 55 vascular plant species were transported externally. Since only a limited number of seeds came from woodland habitats, the open landscape was at least as important as a source of attached seeds as the forest vegetation. Thus, most plant species occurring in the studied forest area, especially characteristic woodland herbs, showed no adaptations to epizoochorous dispersal, although being very abundant in the herb layer. We conclude that hoofed game play a particular role concerning the dispersal of ruderal and grassland species in the agricultural landscape of central Europe. However, the actual spread of some herb species in forests of northern Germany, e.g. Agrostis capillaris, Brachypodium sylvaticum, Deschampsia flexuosa, Galium aparine and Urtica dioica, may be mainly facilitated by wild ungulates. Though dispersal by large mammals is an important mechanism for long-distance dispersal of plants in general, our results suggest that most of the characteristic herb species of mesic deciduous forests have only low epizoochorous dispersal potentials. The implications for nature conservation and silviculture are discussed. 2002 Trägt Schalenwild durch Epizoochorie zur Ausbreitung von Gefäßpflanzen in mitteleuropäischen Wäldern bei? urn:nbn:de:kobv:517-opus-5850 Institut für Biochemie und Biologie OPUS4-42484 misc Lozada Gobilard, Sissi Donna; Stang, Susanne; Pirhofer-Walzl, Karin; Kalettka, Thomas; Heinken, Thilo; Schröder, Boris; Eccard, Jana; Jasmin Radha, Jasmin Environmental filtering predicts plant-community trait distribution and diversity Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small-scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. 2019 13 Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe 629 urn:nbn:de:kobv:517-opus4-424843 10.25932/publishup-42484 Institut für Biochemie und Biologie OPUS4-42485 Wissenschaftlicher Artikel Lozada Gobilard, Sissi Donna; Stang, Susanne; Pirhofer-Walzl, Karin; Kalettka, Thomas; Heinken, Thilo; Schröder, Boris; Eccard, Jana; Jasmin Radha, Jasmin Environmental filtering predicts plant-community trait distribution and diversity Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small-scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity. Hoboken John Wiley & Sons, Inc. 2019 13 Ecology and Evolution 10.1002/ece3.4883 Institut für Biochemie und Biologie OPUS4-50320 Wissenschaftlicher Artikel Vanneste, Thomas; Valdes, Alicia; Verheyen, Kris; Perring, Michael P.; Bernhardt-Roemermann, Markus; Andrieu, Emilie; Brunet, Jorg; Cousins, Sara A. O.; Deconchat, Marc; De Smedt, Pallieter; Diekmann, Martin; Ehrmann, Steffen; Heinken, Thilo; Hermy, Martin; Kolb, Annette; Lenoir, Jonathan; Liira, Jaan; Naaf, Tobias; Paal, Taavi; Wulf, Monika; Decocq, Guillaume; De Frenne, Pieter Functional trait variation of forest understorey plant communities across Europe Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved. München Elsevier GmbH 2018 14 Basic and applied ecology : Journal of the Gesellschaft für Ökologie 34 1 14 10.1016/j.baae.2018.09.004 Institut für Biochemie und Biologie OPUS4-53126 Wissenschaftlicher Artikel Perring, Michael P.; Bernhardt-Roemermann, Markus; Baeten, Lander; Midolo, Gabriele; Blondeel, Haben; Depauw, Leen; Landuyt, Dries; Maes, Sybryn L.; De Lombaerde, Emiel; Caron, Maria Mercedes; Vellend, Mark; Brunet, Joerg; Chudomelova, Marketa; Decocq, Guillaume; Diekmann, Martin; Dirnboeck, Thomas; Doerfler, Inken; Durak, Tomasz; De Frenne, Pieter; Gilliam, Frank S.; Hedl, Radim; Heinken, Thilo; Hommel, Patrick; Jaroszewicz, Bogdan; Kirby, Keith J.; Kopecky, Martin; Lenoir, Jonathan; Li, Daijiang; Malis, Frantisek; Mitchell, Fraser J. G.; Naaf, Tobias; Newman, Miles; Petrik, Petr; Reczynska, Kamila; Schmidt, Wolfgang; Standovar, Tibor; Swierkosz, Krzysztof; Van Calster, Hans; Vild, Ondrej; Wagner, Eva Rosa; Wulf, Monika; Verheyen, Kris Global environmental change effects on plant community composition trajectories depend upon management legacies The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. Hoboken Wiley 2018 19 Global change biology 24 4 1722 1740 10.1111/gcb.14030 Institut für Biochemie und Biologie OPUS4-50220 Wissenschaftlicher Artikel Maes, Sybryn L.; Blondeel, Haben; Perring, Michael P.; Depauw, Leen; Brumelis, Guntis; Brunet, Jörg; Decocq, Guillaume; den Ouden, Jan; Haerdtle, Werner; Hedl, Radim; Heinken, Thilo; Heinrichs, Steffi; Jaroszewicz, Bogdan; Kirby, Keith J.; Kopecky, Martin; Malis, Frantisek; Wulf, Monika; Verheyen, Kris Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-ratio (C/N), litter mass, bio-available and total phosphorus, pH(KCI)and soil organic matter. We collected mineral soil and litter layer samples, and measured site characteristics for 190 20 x 20 m European mixed forest plots across gradients of litter quality (derived from the canopy species composition) and atmospheric deposition, and for different categories of past land cover and past forest management. We accounted for the effects of parent material on topsoil conditions by clustering our plots into three soil type groups based on texture and carbonate concentration. We found that litter quality was a stronger driver of topsoil conditions compared to land-use history or atmospheric deposition, while the soil type also affected several topsoil conditions here. Plots with higher litter quality had soils with a higher proportion of exchangeable base cations, and total phosphorus, and lower C/N-ratios and litter mass. Furthermore, the observed litter quality effects on the topsoil were independent from the regional nitrogen deposition or the soil type, although the soil type likely (co)-determined canopy composition and thus litter quality to some extent in the investigated plots. Litter quality effects on topsoil phosphorus concentrations did interact with past land cover, highlighting the need to consider land-use history when evaluating canopy effects on soil conditions. We conclude that forest managers can use the canopy composition as an important tool for influencing topsoil conditions, although soil type remains an important factor to consider. Amsterdam Elsevier 2019 14 Forest ecology and management 433 405 418 10.1016/j.foreco.2018.10.056 Institut für Biochemie und Biologie