Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-35724 Wissenschaftlicher Artikel Gao, Feng; Wang, Jianpu; Blakesley, James C.; Hwang, Inchan; Li, Zhe; Greenham, Neil C. Quantifying loss mechanisms in polymer Fullerene photovoltaic devices Weinheim Wiley-VCH 2012 6 dvanced energy materials 2 8 956 961 10.1002/aenm.201200073 Institut für Physik und Astronomie OPUS4-37772 Review Cardinaletti, Ilaria; Kesters, Jurgen; Bertho, Sabine; Conings, Bert; Piersimoni, Fortunato; Lutsen, Laurence; Nesladek, Milos; Van Mele, Bruno; Van Assche, Guy; Vandewal, Koen; Salleo, Alberto; Vanderzande, Dirk; Maes, Wouter; Manca, Jean V. Toward bulk heterojunction polymer solar cells with thermally stable active layer morphology When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Bellingham SPIE 2014 12 Journal of photonics for energy 4 10.1117/1.JPE.4.040997 Institut für Physik und Astronomie OPUS4-36065 Wissenschaftlicher Artikel Schubert, Marcel; Dolfen, Daniel; Frisch, Johannes; Roland, Steffen; Steyrleuthner, Robert; Stiller, Burkhard; Chen, Zhihua; Scherf, Ullrich; Koch, Norbert; Facchetti, Antonio; Neher, Dieter Influence of aggregation on the performance of All-Polymer Solar Cells containing Low-Bandgap Naphthalenediimide Copolymers The authors present efficient all-polymer solar cells comprising two different low-bandgap naphthalenediimide (NDI)-based copolymers as acceptors and regioregular P3HT as the donor. It is shown that these naphthalene copolymers have a strong tendency to preaggregate in specific organic solvents, and that preaggregation can be completely suppressed when using suitable solvents with large and highly polarizable aromatic cores. Organic solar cells prepared from such nonaggregated polymer solutions show dramatically increased power conversion efficiencies of up to 1.4%, which is mainly due to a large increase of the short circuit current. In addition, optimized solar cells show remarkable high fill factors of up to 70%. The analysis of the blend absorbance spectra reveals a surprising anticorrelation between the degree of polymer aggregation in the solid P3HT:NDI copolymer blends and their photovoltaic performance. Scanning near-field optical microscopy (SNOM) and atomic force microscopy (AFM) measurements reveal important information on the blend morphology. It is shown that films with high degree of aggregation and low photocurrents exhibit large-scale phase-separation into rather pure donor and acceptor domains. It is proposed that, by suppressing the aggregation of NDI copolymers at the early stage of film formation, the intermixing of the donor and acceptor component is improved, thereby allowing efficient harvesting of photogenerated excitons at the donoracceptor heterojunction. Weinheim Wiley-VCH 2012 12 dvanced energy materials 2 3 369 380 10.1002/aenm.201100601 Institut für Physik und Astronomie OPUS4-53024 Wissenschaftlicher Artikel Sini, Gjergji; Schubert, Marcel; Risko, Chad; Roland, Steffen; Lee, Olivia P.; Chen, Zhihua; Richter, Thomas V.; Dolfen, Daniel; Coropceanu, Veaceslav; Ludwigs, Sabine; Scherf, Ullrich; Facchetti, Antonio; Frechet, Jean M. J.; Neher, Dieter On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor-acceptor (D-A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force ( energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules. Weinheim Wiley-VCH 2018 15 Advanced energy materials 8 12 10.1002/aenm.201702232 Institut für Physik und Astronomie OPUS4-58409 Wissenschaftlicher Artikel Vollbrecht, Joachim; Brus, Viktor V. On charge carrier density in organic solar cells obtained via capacitance spectroscopy The determination of the voltage-dependent density of free charge carriers via capacitance spectroscopy is considered an important step in the analysis of emerging photovoltaic technologies, such as organic and perovskite solar cells. In particular, an intimate knowledge of the density of free charge carriers is required for the determination of crucial parameters such as the effective mobility, charge carrier lifetime, nongeminate recombination coefficients, average extraction times, and competition factors. Hence, it is paramount to verify the validity of the commonly employed approaches to obtain the density of free charge carriers. The advantages, drawbacks, and limitations of the most common approaches are investigated in detail and strategies to mitigate misleading values are explored. To this end, two types of nonfullerene organic solar cells based on a PTB7-Th:ITIC-2F blend and a PM6:Y6 blend, respectively, are used as a case study to assess how subsequent analyses of the nongeminate recombination dynamics depend on the chosen approach to calculate the density of free charge carriers via capacitance spectroscopy. Hoboken Wiley 2020 9 Advanced electronic materials 6 10 10.1002/aelm.202000517 Institut für Physik und Astronomie OPUS4-60819 Wissenschaftlicher Artikel Vollbrecht, Joachim; Brus, Viktor V. On the recombination order of surface recombination under open circuit conditions Understanding the recombination dynamics of organic and perovskite solar cells has been a crucial prerequisite in the steadily increasing performance of these promising new types of photovoltaics. Surface recombination in particular has turned out to be one of the last remaining roadblocks, which specifically reduces the open circuit voltage. In this study, the relationship between the rate of surface recombination and the density of charge carriers is analyzed, revealing a cubic dependence between these two parameters. This hypothesis is then tested and verified with the recombination dynamics of an organic solar cell known to exhibit significant surface recombination and a high energy proton irradiated CH3NH3PbI3 pemvskite solar cell during white light illumination. Incidentally, these results can also explain recombination orders exceeding the commonly known threshold for bimolecular recombination that have been observed in some studies without the need for a charge carrier dependent bimolecular recombination coefficient. Amsterdam [u.a.] Elsevier Science 2020 7 Organic electronics : physics, materials and applications 86 10.1016/j.orgel.2020.105905 Institut für Physik und Astronomie