Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-36753 Wissenschaftlicher Artikel Delahaye, T.; Fiasson, A.; Pohl, Martin; Salati, P. The GeV-TeV Galactic gamma-ray diffuse emission I. Uncertainties in the predictions of the hadronic component Context. The Galactic gamma-ray diffuse emission is currently observed in the GeV-TeV energy range with unprecedented accuracy by the Fermi satellite. Understanding this component is crucial because it provides a background to many different signals, such as extragalactic sources or annihilating dark matter. It is timely to reinvestigate how it is calculated and to assess the various uncertainties that are likely to affect the accuracy of the predictions. Aims. The Galactic gamma-ray diffuse emission is mostly produced above a few GeV by the interactions of cosmic ray primaries impinging on the interstellar material. The theoretical error on that component is derived by exploring various potential sources of uncertainty. Particular attention is paid to cosmic ray propagation. Nuclear cross sections, the proton and helium fluxes at the Earth's position, the Galactic radial profile of supernova remnants, and the hydrogen distribution can also severely affect the signal. Methods. The propagation of cosmic ray species throughout the Galaxy is described in the framework of a semi-analytic two-zone diffusion/convection model. The gamma-ray flux is reliably and quickly determined. This allows conversion of the constraints set by the boron-to-carbon data into a theoretical uncertainty on the diffuse emission. New deconvolutions of the HI and CO sky maps are also used to get the hydrogen distribution within the Galaxy. Results. The thickness of the cosmic ray diffusive halo is found to have a significant effect on the Galactic gamma-ray diffuse emission, while the interplay between diffusion and convection has little influence on the signal. The uncertainties related to nuclear cross sections and to the primary cosmic ray fluxes at the Earth are significant. The radial distribution of supernova remnants along the Galactic plane turns out to be a key ingredient. As expected, the predictions are extremely sensitive to the spatial distribution of hydrogen within the Milky Way. Conclusions. Most of the sources of uncertainty are likely to be reduced in the near future. The stress should be put (i) on better determination of the thickness of the cosmic ray diffusive halo; and (ii) on refined observations of the radial profile of supernova remnants. Les Ulis EDP Sciences 2011 19 Astronomy and astrophysics : an international weekly journal 531 4 10.1051/0004-6361/201116647 Institut für Physik und Astronomie OPUS4-37581 Wissenschaftlicher Artikel Baushev, Anton N. Relaxation of dark matter halos: how to match observational data? We show that moderate energy relaxation in the formation of dark matter halos invariably leads to profiles that match those observed in the central regions of galaxies. The density profile of the central region is universal and insensitive to either the seed perturbation shape or the details of the relaxation process. The profile has a central core; the multiplication of the central density by the core radius is almost independent of the halo mass, in accordance with observations. In the core area the density distribution behaves as an Einasto profile with low index (n similar to 0.5); it has an extensive region with rho proportional to r(-2) at larger distances. This is exactly the shape that observations suggest for the central region of galaxies. On the other hand, this shape does not fit the galaxy cluster profiles. A possible explanation of this fact is that the relaxation is violent in the case of galaxy clusters; however, it is not violent enough when galaxies or smaller dark matter structures are considered. We discuss the reasons for this. Les Ulis EDP Sciences 2014 8 Astronomy and astrophysics : an international weekly journal 569 10.1051/0004-6361/201322730 Institut für Physik und Astronomie OPUS4-36571 Wissenschaftlicher Artikel Baushev, Anton N. Principal properties of the velocity distribution of dark matter particles on the outskirts of the Solar system The velocity distribution of the dark matter particles on the outskirts of the Solar system remains unclear. We suggest to determine it using experimentally found properties of the oldest halo objects. Indeed, the oldest halo stars and globular clusters form a collisionless system, as well as dark matter particles do, and they evolved in the same gravitational field. If we accept this analogy, we can show that the velocity distribution of the dark matter particles should be highly anisotropic and have a sharp maximum near upsilon similar to 500 km s(-1). The distribution is totally different from the Maxwell one. We analyse the influence of the distribution function on the results of dark matter detection experiments. It is found that the direct detection signal should differ noticeably from the one calculated from the Maxwell distribution with similar or equal to 220 km s(-1), which is conventional for direct detection experiments (the ratio depends on the detector properties and typically falls within the range between 6 and 0.2). Moreover, the sharp distinction from the Maxwell distribution can be very essential to the observations of dark matter annihilation. Malden Wiley-Blackwell 2011 5 Monthly notices of the Royal Astronomical Society 417 1 L83 L87 10.1111/j.1745-3933.2011.01125.x Institut für Physik und Astronomie OPUS4-56384 Dissertation Thomas, Timon Cosmic-ray hydrodynamics: theory, numerics, applications Cosmic rays (CRs) are a ubiquitous and an important component of astrophysical environments such as the interstellar medium (ISM) and intracluster medium (ICM). Their plasma physical interactions with electromagnetic fields strongly influence their transport properties. Effective models which incorporate the microphysics of CR transport are needed to study the effects of CRs on their surrounding macrophysical media. Developing such models is challenging because of the conceptional, length-scale, and time-scale separation between the microscales of plasma physics and the macroscales of the environment. Hydrodynamical theories of CR transport achieve this by capturing the evolution of CR population in terms of statistical moments. In the well-established one-moment hydrodynamical model for CR transport, the dynamics of the entire CR population are described by a single statistical quantity such as the commonly used CR energy density. In this work, I develop a new hydrodynamical two-moment theory for CR transport that expands the well-established hydrodynamical model by including the CR energy flux as a second independent hydrodynamical quantity. I detail how this model accounts for the interaction between CRs and gyroresonant Alfvén waves. The small-scale magnetic fields associated with these Alfvén waves scatter CRs which fundamentally alters CR transport along large-scale magnetic field lines. This leads to the effects of CR streaming and diffusion which are both captured within the presented hydrodynamical theory. I use an Eddington-like approximation to close the hydrodynamical equations and investigate the accuracy of this closure-relation by comparing it to high-order approximations of CR transport. In addition, I develop a finite-volume scheme for the new hydrodynamical model and adapt it to the moving-mesh code Arepo. This scheme is applied using a simulation of a CR-driven galactic wind. I investigate how CRs launch the wind and perform a statistical analysis of CR transport properties inside the simulated circumgalactic medium (CGM). I show that the new hydrodynamical model can be used to explain the morphological appearance of a particular type of radio filamentary structures found inside the central molecular zone (CMZ). I argue that these harp-like features are synchrotron-radiating CRs which are injected into braided magnetic field lines by a point-like source such as a stellar wind of a massive star or a pulsar. Lastly, I present the finite-volume code Blinc that uses adaptive mesh refinement (AMR) techniques to perform simulations of radiation and magnetohydrodynamics (MHD). The mesh of Blinc is block-structured and represented in computer memory using a graph-based approach. I describe the implementation of the mesh graph and how a diffusion process is employed to achieve load balancing in parallel computing environments. Various test problems are used to verify the accuracy and robustness of the employed numerical algorithms. 2022 334 urn:nbn:de:kobv:517-opus4-563843 10.25932/publishup-56384 Institut für Physik und Astronomie OPUS4-49507 Wissenschaftlicher Artikel Thomas, T.; Pfrommer, Christoph Cosmic-ray hydrodynamics Star formation in galaxies appears to be self-regulated by energetic feedback processes. Among the most promising agents of feedback are cosmic rays (CRs), the relativistic ion population of interstellar and intergalactic plasmas. In these environments, energetic CRs are virtually collisionless and interact via collective phenomena mediated by kinetic-scale plasma waves and large-scale magnetic fields. The enormous separation of kinetic and global astrophysical scales requires a hydrodynamic description. Here, we develop a new macroscopic theory for CR transport in the self-confinement picture, which includes CR diffusion and streaming. The interaction between CRs and electromagnetic fields of Alfvenic turbulence provides the main source of CR scattering, and causes CRs to stream along the magnetic field with the Alfven velocity if resonant waves are sufficiently energetic. However, numerical simulations struggle to capture this effect with current transport formalisms and adopt regularization schemes to ensure numerical stability. We extent the theory by deriving an equation for the CRmomentum density along the mean magnetic field and include a transport equation for the Alfven-wave energy. We account for energy exchange of CRs and Alfven waves via the gyroresonant instability and include other wave damping mechanisms. Using numerical simulations, we demonstrate that our new theory enables stable, self-regulated CR transport. The theory is coupled to magnetohydrodynamics, conserves the total energy and momentum, and correctly recovers previous macroscopic CR transport formalisms in the steady-state flux limit. Because it is free of tunable parameters, it holds the promise to provide predictable simulations of CR feedback in galaxy formation. Oxford Oxford Univ. Press 2019 32 Monthly notices of the Royal Astronomical Society 485 3 2977 3008 10.1093/mnras/stz263 Institut für Physik und Astronomie OPUS4-34541 Wissenschaftlicher Artikel Tepper-Garcia, Thor; Richter, Philipp; Schaye, Joop Absorption signatures of warm-hot gas at low redshift - ne viii At z < 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10 (5)-10 (6) K). Absorption by the 770.41, 780.32 A doublet of Ne viii in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have developed an analytic model for the properties of Ne viii absorbers that allows for an inhomogeneous metal distribution. Our model agrees with the predictions of a simulation from the OverWhelmingly Large Simulations project indicating that the average line-of-sight metal-filling fraction within the absorbing gas is low (c(L) similar to 0.1). Most of the Ne viii in our model is produced in low-density, collisionally ionized gas (n(H) = 10(-6)-10(-4) cm(-3), T = 10 (5)-10 (6) K). Strong Ne viii absorbers (log(10)(N-NeVIII/cm(-2))14), like those recently detected by Hubble Space Telescope/Cosmic Origins Spectrograph, are found to arise in higher density gas (n(H) greater than or similar to 10(-4) cm(-3), T approximate to 5 x 10 (5) K). Ne viii cloudlets harbour only 1 per cent of the cosmic baryon budget. The baryon content of the surrounding gas (which has similar densities and temperatures as the Ne viii cloudlets) is a factor c(-1)L higher. We conclude that Ne viii absorbers are robust probes of shock-heated diffuse gas, but that spectra with signal-to-noise ratios S/N > 100 would be required to detect the bulk of the baryons in warm-hot gas. Oxford Oxford Univ. Press 2013 19 Monthly notices of the Royal Astronomical Society 436 3 2063 2081 10.1093/mnras/stt1712 Institut für Physik und Astronomie