Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-46250 Wissenschaftlicher Artikel Grebenkov, Denis S.; Metzler, Ralf; Oshanin, Gleb Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry-characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. Bristol IOP Publ. Ltd. 2017 11 New journal of physics : the open-access journal for physics 19 10.1088/1367-2630/aa8ed9 Institut für Physik und Astronomie OPUS4-40372 misc Grebenkov, Denis S.; Metzler, Ralf; Oshanin, Gleb Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. 2017 11 urn:nbn:de:kobv:517-opus4-403726 Institut für Physik und Astronomie OPUS4-40371 Wissenschaftlicher Artikel Grebenkov, Denis S.; Metzler, Ralf; Oshanin, Gleb Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains Westudy the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. London IOP 2017 10 New journal of physics 19 1 11 10.1088/1367-2630/aa8ed9 Institut für Physik und Astronomie