Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-48501 Wissenschaftlicher Artikel Wilkin, Kyle J.; Parrish, Robert M.; Yang, Jie; Wolf, Thomas J. A.; Nunes, J. Pedro F.; Gühr, Markus; Li, Renkai; Shen, Xiaozhe; Zheng, Qiang; Wang, Xijie; Martinez, Todd J.; Centurion, Martin Diffractive imaging of dissociation and ground-state dynamics in a complex molecule We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p perpendicular to orbital to a mixed 5p parallel to sigma hole and CF2 center dot antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (nonbridged) structure in less than 200 fs. College Park American Physical Society 2019 10 Physical review : A, Atomic, molecular, and optical physics 100 2 10.1103/PhysRevA.100.023402 Institut für Physik und Astronomie OPUS4-46455 Wissenschaftlicher Artikel Huang, Hongshi; Guo, Jianqiao; Yang, Jie; Jiang, Yanfang; Yu, Yuanyuan; Mueller, Steffen; Ren, Gexue; Ao, Yingfang Isokinetic angle-specific moments and ratios characterizing hamstring and quadriceps strength in anterior cruciate ligament deficient knees This study is intended to find more effective and robust clinical diagnostic indices to characterize muscle strength and coordination alternation following anterior cruciate ligament (ACL) rupture. To evaluate angle-specific moments and hamstring (H)/quadriceps (Q) ratios, 46 male subjects with unilateral chronic ACL-rupture performed isokinetic concentric (c), eccentric (e) quadriceps and hamstring muscle tests respectively at 60 degrees/s. Normalized moments and H/Q ratios were calculated for peak moment (PM) and 30 degrees, 40 degrees, 50 degrees, 60 degrees, 70 degrees, 80 degrees knee flexion angles. Furthermore, we introduced single-to-arithmetic-mean (SAM) and single-to-root-mean-square (SRMS) muscle co-contraction ratios, calculating them for specific angles and different contraction repetitions. Normalized PM and 40 degrees specific concentric quadriceps, concentric hamstring strength in the ACL-deficient knee were reduced significantly (P <= 0.05). Concentric angle-specific moments together with Qe/Qc ratios at 40 degrees (d = 0.766 vs. d = 0.654) identify more obvious differences than peak values in ACL ruptured limbs. Furthermore, we found SRMS-QeQc deficits at 40 degrees showed stronger effect than Qe/Qc ratios (d = 0.918 vs. d = 0.766), albeit other ratio differences remained basically the same effect size as the original H/Q ratios. All the newly defined SAM and SRMS indices could decrease variance. Overall, 40 degrees knee moments and SAM/ SRMS ratios might be new potential diagnosis indices for ACL rupture detection. London Nature Publ. Group 2017 11 Scientific reports 7 10.1038/s41598-017-06601-5 Department Sport- und Gesundheitswissenschaften OPUS4-52491 Wissenschaftlicher Artikel Yang, Jie; Zhu, Xiaolei; Wolf, Thomas J. A.; Li, Zheng; Nunes, João Pedro Figueira; Coffee, Ryan; Cryan, James P.; Gühr, Markus; Hegazy, Kareem; Heinz, Tony F.; Jobe, Keith; Li, Renkai; Shen, Xiaozhe; Veccione, Theodore; Weathersby, Stephen; Wilkin, Kyle J.; Yoneda, Charles; Zheng, Qiang; Martinez, Todd J.; Centurion, Martin; Wang, Xijie Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations. Washington American Assoc. for the Advancement of Science 2018 4 Science 361 6397 64 67 10.1126/science.aat0049 Institut für Physik und Astronomie OPUS4-45477 Wissenschaftlicher Artikel Yang, Jie; Gühr, Markus; Vecchione, Theodore; Robinson, Matthew Scott; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Centurion, Martin; Wang, Xijie Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 angstrom) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions. London Nature Publ. Group 2016 9 Nature Communications 7 10.1038/ncomms11232 Institut für Physik und Astronomie OPUS4-39498 misc Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew Scott; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin Femtosecond gas phase electron diffraction with MeV electrons We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution. 2016 19 urn:nbn:de:kobv:517-opus4-394989 Institut für Physik und Astronomie OPUS4-45708 Wissenschaftlicher Artikel Yang, Jie; Gühr, Markus; Vecchione, Theodore; Robinson, Matthew Scott; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Gaffney, Kelly; Gorkhover, Tais; Hast, Carsten; Jobe, Keith; Makasyuk, Igor; Reid, Alexander; Robinson, Joseph; Vetter, Sharon; Wang, Fenglin; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin Femtosecond gas phase electron diffraction with MeV electrons We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution. Cambridge Royal Society of Chemistry 2016 19 Faraday discussions 194 563 581 10.1039/c6fd00071a Institut für Physik und Astronomie OPUS4-44867 Wissenschaftlicher Artikel Yang, Jie; Guehr, Markus; Shen, Xiaozhe; Li, Renkai; Vecchione, Theodore; Coffee, Ryan; Corbett, Jeff; Fry, Alan; Hartmann, Nick; Hast, Carsten; Hegazy, Kareem; Jobe, Keith; Makasyuk, Igor; Robinson, Joseph; Robinson, Matthew Scott; Vetter, Sharon; Weathersby, Stephen; Yoneda, Charles; Wang, Xijie; Centurion, Martin Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 angstrom and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet. College Park American Physical Society 2016 6 Physical review letters 117 10.1103/PhysRevLett.117.153002 Institut für Physik und Astronomie