Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-51910 Wissenschaftlicher Artikel Schaefer, Laura V.; Bittmann, Frank N. Paired personal interaction reveals objective differences between pushing and holding isometric muscle action In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80% MVIC) and two fatiguing trials (90% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A "HIMA failure" occurred in 85% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA. San Francisco PLOS 2021 21 PLOS One 16 5 10.1371/journal.pone.0238331 Department Sport- und Gesundheitswissenschaften OPUS4-41987 Wissenschaftlicher Artikel Schaefer, Laura V.; Bittmann, Frank N. Coherent behavior of neuromuscular oscillations between isometrically interacting subjects Previous research has shown that electrical muscle activity is able to synchronize between muscles of one subject. The ability to synchronize the mechanical muscle oscillations measured by Mechanomyography (MMG) is not described sufficiently. Likewise, the behavior of myofascial oscillations was not considered yet during muscular interaction of two human subjects. The purpose of this study is to investigate the myofascial oscillations intra- and interpersonally. For this the mechanical muscle oscillations of the triceps and the abdominal external oblique muscles were measured by MMG and the triceps tendon was measured by mechanotendography (MTG) during isometric interaction of two subjects (n = 20) performed at 80% of the MVC using their arm extensors. The coherence of MMG/MTG-signals was analyzed with coherence wavelet transform and was compared with randomly matched signal pairs. Each signal pairing shows significant coherent behavior. Averagely, the coherent phases of n = 485 real pairings last over 82 ± 39 % of the total duration time of the isometric interaction. Coherent phases of randomly matched signal pairs take 21 ± 12 % of the total duration time (n = 39). The difference between real vs. randomly matched pairs is significant (U = 113.0, p = 0.000, r = 0.73). The results show that the neuromuscular system seems to be able to synchronize to another neuromuscular system during muscular interaction and generate a coherent behavior of the mechanical muscular oscillations. Potential explanatory approaches are discussed. London Macmillan Publishers Limited 2018 9 Scientific Reports 8 1 10 10.1038/s41598-018-33579-5 Strukturbereich Kognitionswissenschaften