Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-34797 Wissenschaftlicher Artikel Rattana, Amornrat; Böckmann, Christine Matrix methods for computing eigenvalues of Sturm-Liouville problems of order four This paper examines and develops matrix methods to approximate the eigenvalues of a fourth order Sturm-Liouville problem subjected to a kind of fixed boundary conditions. Furthermore, it extends the matrix methods for a kind of general boundary conditions. The idea of the methods comes from finite difference and Numerov's methods as well as boundary value methods for second order regular Sturm-Liouville problems. Moreover, the determination of the correction term formulas of the matrix methods is investigated in order to obtain better approximations of the problem with fixed boundary conditions since the exact eigenvalues for q = 0 are known in this case. Finally, some numerical examples are illustrated. Amsterdam Elsevier 2013 13 Journal of computational and applied mathematics 249 8 144 156 10.1016/j.cam.2013.02.024 Institut für Mathematik
OPUS4-5733 unpublished Rattana, Amornrat; Böckmann, Christine Matrix methods for computing Eigenvalues of Sturm-Liouville problems of order four This paper examines and develops matrix methods to approximate the eigenvalues of a fourth order Sturm-Liouville problem subjected to a kind of fixed boundary conditions, furthermore, it extends the matrix methods for a kind of general boundary conditions. The idea of the methods comes from finite difference and Numerov's method as well as boundary value methods for second order regular Sturm-Liouville problems. Moreover, the determination of the correction term formulas of the matrix methods are investigated in order to obtain better approximations of the problem with fixed boundary conditions since the exact eigenvalues for q = 0 are known in this case. Finally, some numerical examples are illustrated. 2012 urn:nbn:de:kobv:517-opus-59279 Institut für Mathematik