Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-1660 unpublished Pra, Paolo Dai; Louis, Pierre-Yves; Minelli, Ida G. Complete monotone coupling for Markov processes We formalize and analyze the notions of monotonicity and complete monotonicity for Markov Chains in continuous-time, taking values in a finite partially ordered set. Similarly to what happens in discrete-time, the two notions are not equivalent. However, we show that there are partially ordered sets for which monotonicity and complete monotonicity coincide in continuoustime but not in discrete-time. 2008 urn:nbn:de:kobv:517-opus-18286 Institut für Mathematik
OPUS4-14968 Wissenschaftlicher Artikel Louis, Pierre-Yves Ergodicity of PCA: equivalence between spatial and temporal mixing conditions For a general attractive Probabilistic Cellular Automata on SZd, we prove that the (time-) convergence towards equilibrium of this Markovian parallel dynamics exponentially fast in the uniform norm is equivalent to a condition (A). This condition means the exponential decay of the influence from the boundary for the invariant measures of the system restricted to finite boxes. For a class of reversible PCA dynamics on {;1, +1}Zd, with a naturally associated Gibbsian potential ;, we prove that a (spatial-) weak mixing condition (WM) for ; implies the validity of the assumption (A); thus exponential (time-) ergodicity of these dynamics towards the unique Gibbs measure associated to ; holds. On some particular examples we state that exponential ergodicity holds as soon as there is no phase transition. 2004 Institut für Mathematik
OPUS4-4896 unpublished Louis, Pierre-Yves; Rouquier, Jean-Baptiste Time-to-Coalescence for interacting particle systems : parallel versus sequential updating Studying the influence of the updating scheme for MCMC algorithm on spatially extended models is a well known problem. For discrete-time interacting particle systems we study through simulations the effectiveness of a synchronous updating scheme versus the usual sequential one. We compare the speed of convergence of the associated Markov chains from the point of view of the time-to-coalescence arising in the coupling-from-the-past algorithm. Unlike the intuition, the synchronous updating scheme is not always the best one. The distribution of the time-to-coalescence for these spatially extended models is studied too. 2009 urn:nbn:de:kobv:517-opus-49454 Institut für Mathematik
OPUS4-4873 unpublished Louis, Pierre-Yves Increasing Coupling of Probabilistic Cellular Automata We give a necessary and sufficient condition for the existence of an increasing coupling of N (N >= 2) synchronous dynamics on S-Zd (PCA). Increasing means the coupling preserves stochastic ordering. We first present our main construction theorem in the case where S is totally ordered; applications to attractive PCAs are given. When S is only partially ordered, we show on two examples that a coupling of more than two synchronous dynamics may not exist. We also prove an extension of our main result for a particular class of partially ordered spaces. 2004 urn:nbn:de:kobv:517-opus-51578 Institut für Mathematik
OPUS4-670 misc Dai Pra, Paolo; Louis, Pierre-Yves; Minelli, Ida Monotonicity and complete monotonicity for continuous-time Markov chains We analyze the notions of monotonicity and complete monotonicity for Markov Chains in continuous-time, taking values in a finite partially ordered set. Similarly to what happens in discrete-time, the two notions are not equivalent. However, we show that there are partially ordered sets for which monotonicity and complete monotonicity coincide in continuous time but not in discrete-time. 2006 urn:nbn:de:kobv:517-opus-7665 Institut für Mathematik
OPUS4-4872 unpublished Louis, Pierre-Yves Coupling, space and time Mixing for parallel stochastic dynamics We first introduce some coupling of a finite number of Probabilistic Cellular Automata dynamics (PCA), preserving the stochastic ordering. Using this tool, for a general attractive probabilistic cellular automata on SZd, where S is finite, we prove that a condition (A) is equivalent to the (time-) convergence towards equilibrium of this Markovian parallel dynamics, in the uniform norm, exponentially fast. This condition (A) means the exponential decay of the influence from the boundary for the invariant measures of the system restricted to finite 'box'-volume. For a class of reversible PCA dynamics on {−1, +1}Zd , with a naturally associated Gibbsian potential ϕ, we prove that a Weak Mixing condition for ϕ implies the validity of the assumption (A); thus the 'exponential ergodicity' of the dynamics towards the unique Gibbs measure associated to ϕ holds. On some particular examples of this PCA class, we verify that our assumption (A) is weaker than the Dobrushin-Vasershtein ergodicity condition. For some special PCA, the 'exponential ergodicity' holds as soon as there is no phase transition. 2004 urn:nbn:de:kobv:517-opus-51560 Institut für Mathematik
OPUS4-599 misc Louis, Pierre-Yves Ergodicity of PCA For a general attractive Probabilistic Cellular Automata on S-Zd, we prove that the (time-) convergence towards equilibrium of this Markovian parallel dynamics, exponentially fast in the uniform norm, is equivalent to a condition (A). This condition means the exponential decay of the influence from the boundary for the invariant measures of the system restricted to finite boxes. For a class of reversible PCA dynamics on {1,+1}(Zd), wit a naturally associated Gibbsian potential rho, we prove that a (spatial-) weak mixing condition (WM) for rho implies the validity of the assumption (A); thus exponential (time-) ergodicity of these dynamics towards the unique Gibbs measure associated to rho hods. On some particular examples we state that exponential ergodicity holds as soon as there is no phase transition. 2004 urn:nbn:de:kobv:517-opus-6589 Institut für Mathematik
OPUS4-600 misc Louis, Pierre-Yves Increasing coupling for probabilistic cellular automata We give a necessary and sufficient condition for the existence of an increasing coupling of N (N >= 2) synchronous dynamics on S-Zd (PCA). Increasing means the coupling preserves stochastic ordering. We first present our main construction theorem in the case where S is totally ordered; applications to attractive PCAs are given. When S is only partially ordered, we show on two examples that a coupling of more than two synchronous dynamics may not exist. We also prove an extension of our main result for a particular class of partially ordered spaces. 2005 urn:nbn:de:kobv:517-opus-6593 Institut für Mathematik
OPUS4-13248 Wissenschaftlicher Artikel Louis, Pierre-Yves Increasing coupling for probabilistic cellular automata We give a necessary and sufficient condition for the existence of an increasing coupling of N (N greater as 2) synchronous dynamics on S^Zd (PCA). Increasing means the coupling preserves stochastic ordering. We first present our main construction theorem in the case where S is totally ordered; applications to attractive PCAs are given. When S is only partially ordered, we show on two examples that a coupling of more than two synchronous dynamics may not exist. We also prove an extension of our main result for a particular class of partially ordered spaces. 2005 Institut für Mathematik
OPUS4-11983 Wissenschaftlicher Artikel Dai Pra, Paolo; Louis, Pierre-Yves; Minelli, Ida Monotonicity and complete monotonicity for continuous-time Markov chains We analyze the notions of monotonicity and complete monotonicity for Markov Chains in continuous-time, taking values in a finite partially ordered set. Similarly to what happens in discrete-time, the two notions are not equivalent. However, we show that there are partially ordered sets for which monotonicity and complete monotonicity coincide in continuous time but not in discrete-time 2006 10.1016/j.crma.2006.04.007 Institut für Mathematik