Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-34852 Wissenschaftlicher Artikel Glombitza, Clemens; Stockhecke, Mona; Schubert, Carsten J.; Vetter, Alexandra; Kallmeyer, Jens Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia,Turkey) As part of the International Continental Drilling Program deep lake drilling project Paleo Van, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4%0, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (<22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM.VVe thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. Lausanne Frontiers Research Foundation 2013 12 Frontiers in microbiology 4 28 10.3389/fmicb.2013.00209 Institut für Geowissenschaften OPUS4-38640 Wissenschaftlicher Artikel Kallmeyer, Jens; Grewe, Sina; Glombitza, Clemens; Kitte, J. Axel Microbial abundance in lacustrine sediments: a case study from Lake Van, Turkey The ICDP "PaleoVan" drilling campaign at Lake Van, Turkey, provided a long (> 100 m) record of lacustrine subsurface sedimentary microbial cell abundance. After the ICDP campaign at Potrok Aike, Argentina, this is only the second time deep lacustrine cell counts have been documented. Two sites were cored and revealed a strikingly similar cell distribution despite differences in organic matter content and microbial activity. Although shifted towards higher values, cell counts from Lake Potrok Aike, Argentina, reveal very similar distribution patterns with depth. The lacustrine cell count data are significantly different from published marine records; the most probable cause is differences in sedimentary organic matter composition with marine sediments containing a higher fraction of labile organic matter. Previous studies showed that microbial activity and abundance increase centimetres to metres around geologic interfaces. The finely laminated Lake Van sediment allowed studying this phenomenon on the microscale. We sampled at the scale of individual laminae, and in some depth intervals, we found large differences in microbial abundance between the different laminae. This small-scale heterogeneity is normally overlooked due to much larger sampling intervals that integrate over several centimetres. However, not all laminated intervals exhibit such large differences in microbial abundance, and some non-laminated horizons show large variability on the millimetre scale as well. The reasons for such contrasting observations remain elusive, but indicate that heterogeneity of microbial abundance in subsurface sediments has not been taken into account sufficiently. These findings have implications not just for microbiological studies but for geochemistry as well, as the large differences in microbial abundance clearly show that there are distinct microhabitats that deviate considerably from the surrounding layers. New York Springer 2015 11 International journal of earth sciences 104 6 1667 1677 10.1007/s00531-015-1219-6 Institut für Geowissenschaften OPUS4-36975 Wissenschaftlicher Artikel Glombitza, Clemens; Mangelsdorf, Kai; Horsfield, Brian Structural insights from boron tribromide ether cleavage into lignites and low maturity coals from the New Zealand Coal Band Ether functionalities form an important cross-linking structure within the macromolecular organic matrix of lignites and coals. To obtain a deeper insight into the complex internal structure of such macromolecules and the maturation related changes of the ether compounds within the network structure, boron tribromide (BBr3) ether cleavage was applied to a series of lignite and coal samples of different maturity (R-0 0.27-0.80%) obtained from coal mines and natural outcrops from the North and South Island of New Zealand. Terminal ether-bound alcohols rapidly decrease during diagenesis and occur only in low amounts during the catagenetic stage. Comparison between ester- and ether-bound terminal alcohols indicates a parallel decreasing trend during the diagenetic stage, suggesting that the stability differences between both linkages are not large enough to be observed in maturation processes over geological time scales:Polyether compounds were detected with chain length up to five carbon atoms. After a small decrease during the diagenetic phase these compounds occur in relatively high concentrations, even in the main catagenetic stage. This suggests that these linkage structures represent important cross-linking substructures within the macromolecular matrix of lignites and coals being sterically protected within the macromolecular network during the maturation process. Additional cross-linking substructures were (poly)ether aromatics, esters and ketones. Oxford Elsevier 2011 9 Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry 42 3 228 236 10.1016/j.orggeochem.2010.12.005 Institut für Geowissenschaften OPUS4-36406 Wissenschaftlicher Artikel Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens A system for incubations at high gas partial pressure High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120 degrees C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custommade parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid-gas-rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90 degrees C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. Lausanne Frontiers Research Foundation 2012 9 Frontiers in microbiology 3 10.3389/fmicb.2012.00025 Institut für Geowissenschaften OPUS4-40767 misc Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens Hydrogen utilization potential in subsurface sediments Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones. 2016 16 Frontiers in microbiology urn:nbn:de:kobv:517-opus4-407678 Mathematisch-Naturwissenschaftliche Fakultät OPUS4-45679 Wissenschaftlicher Artikel Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; Kallmeyer, Jens Hydrogen Utilization Potential in Subsurface Sediments Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones. Lausanne Frontiers Research Foundation 2016 16 Frontiers in microbiology 7 10.3389/fmicb.2016.00008 Institut für Geowissenschaften OPUS4-42982 misc Kallmeyer, Jens; Grewe, Sina; Glombitza, Clemens; Kitte, J. Axel Microbial abundance in lacustrine sediments The ICDP "PaleoVan" drilling campaign at Lake Van, Turkey, provided a long (> 100 m) record of lacustrine subsurface sedimentary microbial cell abundance. After the ICDP campaign at Potrok Aike, Argentina, this is only the second time deep lacustrine cell counts have been documented. Two sites were cored and revealed a strikingly similar cell distribution despite differences in organic matter content and microbial activity. Although shifted towards higher values, cell counts from Lake Potrok Aike, Argentina, reveal very similar distribution patterns with depth. The lacustrine cell count data are significantly different from published marine records; the most probable cause is differences in sedimentary organic matter composition with marine sediments containing a higher fraction of labile organic matter. Previous studies showed that microbial activity and abundance increase centimetres to metres around geologic interfaces. The finely laminated Lake Van sediment allowed studying this phenomenon on the microscale. We sampled at the scale of individual laminae, and in some depth intervals, we found large differences in microbial abundance between the different laminae. This small-scale heterogeneity is normally overlooked due to much larger sampling intervals that integrate over several centimetres. However, not all laminated intervals exhibit such large differences in microbial abundance, and some non-laminated horizons show large variability on the millimetre scale as well. The reasons for such contrasting observations remain elusive, but indicate that heterogeneity of microbial abundance in subsurface sediments has not been taken into account sufficiently. These findings have implications not just for microbiological studies but for geochemistry as well, as the large differences in microbial abundance clearly show that there are distinct microhabitats that deviate considerably from the surrounding layers. 2015 11 Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe 723 1667 1677 urn:nbn:de:kobv:517-opus4-429828 10.25932/publishup-42982 Institut für Geowissenschaften