Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-36260 Wissenschaftlicher Artikel Tiseanu, Carmen; Cojocaru, Bogdan; Parvulescu, Vasile I.; Sanchez-Dominguez, Margarita; Primus, Philipp A.; Boutonnet, Magali Order and disorder effects in nano-ZrO2 investigated by micro-Raman and spectrally and temporarily resolved photoluminescence Pure and europium (Eu3+) doped ZrO2 synthesized by an oil-in-water microemulsion reaction method were investigated by in situ and ex situ X-ray diffraction (XRD), ex situ Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), steady state and time-resolved photoluminescence (PL) spectroscopies. Based on the Raman spectra excited at three different wavelengths i.e. 488, 514 and 633 nm and measured in the spectral range of 150-4000 cm(-1) the correlation between the phonon spectra of ZrO2 and luminescence of europium is clearly evidenced. The PL investigations span a variety of steady-state and time resolved measurements recorded either after direct excitation of the Eu3+ f-f transitions or indirect excitation into UV charge-transfer bands. After annealing at 500 degrees C, the overall Eu3+ emission is dominated by Eu3+ located in tetragonal symmetry lattice sites with a crystal-field splitting of the D-5(0)-F-7(1) emission of 20 cm(-1). Annealing of ZrO2 at 1000 degrees C leads to a superposition of Eu3+ emissions from tetragonal and monoclinic lattice sites with monoclinic crystal-field splitting of 200 cm(-1) for the D-5(0)-F-7(1) transition. At all temperatures, a non-negligible amorphous/disordered content is also measured and determined to be of monoclinic nature. It was found that the evolutions with calcination temperature of the average PL lifetimes corresponding to europium emission in the tetragonal and monoclinic sites and the monoclinic phase content of the Eu3+ doped ZrO2 samples follow a similar trend. By use of specific excitation conditions, the distribution of europium on the amorphous/disordered surface or ordered/crystalline sites can be identified and related to the phase content of zirconia. The role of zirconia host as a sensitizer for the europium PL is also discussed in both tetragonal and monoclinic phases. Cambridge Royal Society of Chemistry 2012 12 Physical chemistry, chemical physics : a journal of European Chemical Societies 14 37 12970 12981 10.1039/c2cp41946g Institut für Chemie OPUS4-37231 Wissenschaftlicher Artikel Tiseanu, Carmen; Parvulescu, Vasile I.; Boutonnet, Magali; Cojocaru, Bogdan; Primus, Philipp A.; Teodorescu, Cristian M.; Solans, Conchita; Sanchez Dominguez, Margarita Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method Pure and europium (Eu3+) doped cerium dioxide (CeO2) nanocrystals have been synthesized by a novel oil-in-water microemulsion reaction method under soft conditions. In-situ X-ray diffraction and RAMAN spectroscopy, high-resolution transmission electron microscopy, UV/Vis diffuse-reflectance and Fourier transform infrared spectroscopy as well as time-resolved photoluminescence spectroscopy were used to characterize the nanaocrystals. The as-synthesized powders are nanocrystalline and have a narrow size distribution centered on 3 nm and high surface area of similar to 250 m(2) g(-1). Only a small fraction of the europium ions substitutes for the bulk, cubic Ce4+ sites in the europium-doped ceria nanocrystals. Upon calcination up to 1000 degrees C, a remarkable high surface area of similar to 120 m(2) g (-1) is preserved whereas an enrichment of the surface Ce4+ relative to Ce3+ ions and relative strong europium emission with a lifetime of similar to 1.8 ms and FWHM as narrow as 10 cm(-1) are measured. Under excitation into the UV and visible spectral range, the europium doped ceria nanocrystals display a variable emission spanning the orange-red wavelengths. The tunable emission is explained by the heterogeneous distribution of the europium dopants within the ceria nanocrystals coupled with the progressive diffusion of the europium ions from the surface to the inner ceria sites and the selective participation of the ceria host to the emission sensitization. Effects of the bulk-doping and impregnation with europium on the ceria host structure and optical properties are also discussed. Cambridge Royal Society of Chemistry 2011 11 Physical chemistry, chemical physics : a journal of European Chemical Societies 13 38 17135 17145 10.1039/c1cp21135h Institut für Chemie