Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen
OPUS4-32091 Wissenschaftlicher Artikel Bouakline, Foudhil; Althorpe, Stuart C.; Larregaray, Pascal; Bonnet, Laurent Strong geometric-phase effects in the hydrogen-exchange reaction at high collision energies : II. quasiclassical trajectory analysis Recent calculations on the hydrogen-exchange reaction [Bouakline et al., J. Chem. Phys. 128, 124322 (2008)], have found strong geometric phase (GP) effects in the state-to-state differential cross-sections (DCS), at energies above the energetic minimum of the conical intersection (CI) seam, which cancel out in the integral cross-sections (ICS). In this article, we explain the origin of this cancellation and make other predictions about the nature of the reaction mechanisms at these high energies by carrying out quasiclassical trajectory (QCT) calculations. Detailed comparisons are made with the quantum results by splitting the quantum and the QCT cross-sections into contributions from reaction paths that wind in different senses around the CI and that scatter the products in the nearside and farside directions. Reaction paths that traverse one transition state (1-TS) scatter their products in just the nearside direction, whereas paths that traverse two transition states (2-TS) scatter in both the nearside and farside directions. However, the nearside 2-TS products scatter into a different region of angular phase-space than the 1-TS products, which explains why the GP effects cancel out in the ICS. Analysis of the QCT results also suggests that two separate reaction mechanisms may be responsible for the 2-TS scattering at high energies. 2010 10.1080/00268971003610218 Institut für Chemie
OPUS4-37226 Wissenschaftlicher Artikel Bartlett, Nate C. -M.; Jankunas, Justin; Goswami, Tapas; Zare, Richard N.; Bouakline, Foudhil; Althorpe, Stuart C. Differential cross sections for H + D-2 -> HD(v '=2, j '=0,3,6,9) + D at center-of-mass collision energies of 1.25, 1.61, and 1.97 eV We have measured differential cross sections (DCSs) for the reaction H + D-2 -> HD- (v' = 2, j' = 0,3,6,9) + D at center-of-mass collision energies E-coll of 1.25, 1.61, and 1.97 eV using the photoloc technique. The DCSs show a strong dependence on the product rotational quantum number. For the HD(v' = 2, j' = 0) product, the DCS is bimodal but becomes oscillatory as the collision energy is increased. For the other product states, they are dominated by a single peak, which shifts from back to sideward scattering as j' increases, and they are in general less sensitive to changes in the collision energy. The experimental results are compared to quantum mechanical calculations and show good, but not fully quantitative agreement. Cambridge Royal Society of Chemistry 2011 5 Physical chemistry, chemical physics : a journal of European Chemical Societies 13 18 8175 8179 10.1039/c0cp02460k Institut für Chemie
OPUS4-35816 Wissenschaftlicher Artikel Jankunas, Justin; Zare, Richard N.; Bouakline, Foudhil; Althorpe, Stuart C.; Herraez-Aguilar, Diego; Aoiz, F. Javier Seemingly anomalous angular distributions in H+D-2 reactive scattering When a hydrogen (H) atom approaches a deuterium (D-2) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D-2 -> HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered. Washington American Assoc. for the Advancement of Science 2012 4 Science 336 6089 1687 1690 10.1126/science.1221329 Institut für Chemie
OPUS4-35513 Wissenschaftlicher Artikel Bouakline, Foudhil; Lüder, Franziska; Martinazzo, Rocco; Saalfrank, Peter Reduced and exact quantum dynamics of the vibrational relaxation of a molecular system interacting with a finite-dimensional bath We investigate the vibrational relaxation of a Morse oscillator, nonlinearly coupled to a finite-dimensional bath of harmonic oscillators at zero temperature, using two different approaches: Reduced dynamics with the help of the Lindblad formalism of reduced density matrix theory in combination with Fermi's Golden Rule, and exact dynamics (within the chosen model). with the multiconfiguration time-dependent Hartree (MCTDH) method. Two different models have been constructed, the situation where the bath spectrum is exactly resonant with the anharmonic oscillator transition frequencies, and the case for which the subsystem is slightly off-resonant with the environment. At short times, reduced dynamics calculations describe the relaxation process qualitatively well but fail to reproduce recurrences observed with MCTDH for longer times. Lifetimes of all the vibrational levels of the Morse oscillator have been calculated, and both Lindblad and MCTDH. results show the same dependence of the lifetimes on the initial vibrational state quantum number. A prediction, which should be generic for adsorbate systems is a striking, sharp increase of lifetimes of the subsystem vibrational levels close to the dissociation This is contradictory with harmonic/linear extrapolation laws, which predict a monotonic decrease of the lifetime with initial vibrational quantum number. Washington American Chemical Society 2012 10 The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory 116 46 11118 11127 10.1021/jp304466u Institut für Chemie