Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-8941 Dissertation Fengler, Anja How the brain attunes to sentence processing While children acquire new words and simple sentence structures extremely fast and without much effort, the ability to process complex sentences develops rather late in life. Although the conjoint occurrence between brain-structural and brain-functional changes, the decrease of plasticity, and changes in cognitive abilities suggests a certain causality between these processes, concrete evidence for the relation between brain development, language processing, and language performance is rare. Therefore, the current dissertation investigates the tripartite relationship between behavior (in the form of language performance and cognitive maturation as prerequisite for language processing), brain structure (in the form of gray matter maturation), and brain function (in the form of brain activation evoked by complex sentence processing). Previous developmental studies indicate a missing increase of activation in accordance to sentence complexity (functional selectivity) in language-relevant brain areas in children. To determine the factors contributing to the functional development of language-relevant brain areas, different methodologies and data acquisition techniques were used to investigate the processing of center-embedded sentences in 5- and 6-year-old children, 7- and 8-year-old children, and adults. Behavioral results indicate that children between 5 and 8 years show difficulties in processing double embedded sentences and that their performance for these type of sentences is positively correlated with digit span. In 7- and 8-year-old children, it was found that especially the processing of long-distance relations between the initial phrase and its corresponding verb appears to be associated with the subject's verbal working memory capacity. In contrast, children's performance for double embedded sentences in the younger age group positively correlated with their performance in a standardized sentence comprehension test. This finding supports the hypothesis that processing difficulties in this age group may be mainly attributed to difficulties in processing case marking information. These findings are discussed with respect to current accounts of language and working memory development. A second study aimed at investigating the structural maturation of brain areas involved in sentence comprehension. To do this, whole-brain magnetic resonance images from 59 children between 5 and 8 years were collected and children's gray matter was analyzed by using voxel-based morphometry. Children's grammatical proficiency was assessed by a standardized sentence comprehension test. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. While children's ability to assign thematic roles is positively correlated with gray matter probability (GMP) in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. These areas have been previously shown to be differentially engaged in adults' complex sentence processing. Thus, the findings of the second study suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities which underlie complex sentence comprehension. In a third study, functional brain activity during the processing of center-embedded sentences was investigated in three different age groups (5-6 years, 7-8 years, and adults). Although all age groups engage a qualitatively comparable network of the left pars opercularis (PO), the left inferior parietal lobe extending into the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area (SMA) and the cerebellum, functional selectivity of these regions was only observable in adults. However, functional activation of the language-related regions (PO and IPL/pSTG) predicted sentence comprehension performance for all age groups. To solve the question of the complex interplay between different maturational factors, a fourth study analyzed the predictive power of gray matter probability, verbal working memory capacity, and behavioral differences in performance for simple and complex sentence for the functional selectivity of each activated region. These analyses revealed that the establishment of the adult-like functional selectivity for complex sentences is predicted by a reduction of the left PO's gray matter probability across age groups while that of the IPL/pSTG is additionally predicted by verbal working memory capacity. Taken all findings together, the current thesis provides evidence that both structural brain maturation and verbal working memory expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. 2016 XVI, 208 MPI series in human cognitive and brain sciences ; 174 978-3-941504-59-2 Strukturbereich Kognitionswissenschaften