Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-6912 Dissertation Trabant, Christoph Ultrafast photoinduced phase transitions in complex materials probed by time-resolved resonant soft x-ray diffraction In processing and data storage mainly ferromagnetic (FM) materials are being used. Approaching physical limits, new concepts have to be found for faster, smaller switches, for higher data densities and more energy efficiency. Some of the discussed new concepts involve the material classes of correlated oxides and materials with antiferromagnetic coupling. Their applicability depends critically on their switching behavior, i.e., how fast and how energy efficient material properties can be manipulated. This thesis presents investigations of ultrafast non-equilibrium phase transitions on such new materials. In transition metal oxides (TMOs) the coupling of different degrees of freedom and resulting low energy excitation spectrum often result in spectacular changes of macroscopic properties (colossal magneto resistance, superconductivity, metal-to-insulator transitions) often accompanied by nanoscale order of spins, charges, orbital occupation and by lattice distortions, which make these material attractive. Magnetite served as a prototype for functional TMOs showing a metal-to-insulator-transition (MIT) at T = 123 K. By probing the charge and orbital order as well as the structure after an optical excitation we found that the electronic order and the structural distortion, characteristics of the insulating phase in thermal equilibrium, are destroyed within the experimental resolution of 300 fs. The MIT itself occurs on a 1.5 ps timescale. It shows that MITs in functional materials are several thousand times faster than switching processes in semiconductors. Recently ferrimagnetic and antiferromagnetic (AFM) materials have become interesting. It was shown in ferrimagnetic GdFeCo, that the transfer of angular momentum between two opposed FM subsystems with different time constants leads to a switching of the magnetization after laser pulse excitation. In addition it was theoretically predicted that demagnetization dynamics in AFM should occur faster than in FM materials as no net angular momentum has to be transferred out of the spin system. We investigated two different AFM materials in order to learn more about their ultrafast dynamics. In Ho, a metallic AFM below T ≈ 130 K, we found that the AFM Ho can not only be faster but also ten times more energy efficiently destroyed as order in FM comparable metals. In EuTe, an AFM semiconductor below T ≈ 10 K, we compared the loss of magnetization and laser-induced structural distortion in one and the same experiment. Our experiment shows that they are effectively disentangled. An exception is an ultrafast release of lattice dynamics, which we assign to the release of magnetostriction. The results presented here were obtained with time-resolved resonant soft x-ray diffraction at the Femtoslicing source of the Helmholtz-Zentrum Berlin and at the free-electron laser in Stanford (LCLS). In addition the development and setup of a new UHV-diffractometer for these experiments will be reported. 2014 urn:nbn:de:kobv:517-opus-71377 Institut für Physik und Astronomie OPUS4-75 Dissertation Klumpp, Stefan Movements of molecular motors : diffusion and directed walks Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechselspiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden Lösung gekennzeichnet. Diese eigentümlichen Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. Im einzelnen werden vier Transportphänomene untersucht: (i) Random Walks von einzelnen Motoren in Kompartimenten verschiedener Geometrien, (ii) stationäre Konzentrationsprofile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen, (iii) randinduzierte Phasenübergänge in offenen röhrenartigen Kompartimenten, die an Motorenreservoirs gekoppelt sind, und (iv) der Einfluß von kooperativen Effekten bei der Motor-Filament-Bindung auf die Bewegung. Alle diese Phänomene sind experimentell zugänglich, und mögliche experimentelle Realisierungen werden diskutiert. 2003 urn:nbn:de:kobv:517-0000806 Institut für Physik und Astronomie OPUS4-41895 Dissertation Abouserie, Ahed Ionic liquid precursors for multicomponent inorganic nanomaterials Health effects, attributed to the environmental pollution resulted from using solvents such as benzene, are relatively unexplored among petroleum workers, personal use, and laboratory researchers. Solvents can cause various health problems, such as neurotoxicity, immunotoxicity, and carcinogenicity. As such it can be absorbed via epidermal or respiratory into the human body resulting in interacting with molecules that are responsible for biochemical and physiological processes of the brain. Owing to the ever-growing demand for finding a solution, an Ionic liquid can use as an alternative solvent. Ionic liquids are salts in a liquid state at low temperature (below 100 C), or even at room temperature. Ionic liquids impart a unique architectural platform, which has been interesting because of their unusual properties that can be tuned by simple ways such as mixing two ionic liquids. Ionic liquids not only used as reaction solvents but they became a key developing for novel applications based on their thermal stability, electric conductivity with very low vapor pressure in contrast to the conventional solvents. In this study, ionic liquids were used as a solvent and reactant at the same time for the novel nanomaterials synthesis for different applications including solar cells, gas sensors, and water splitting. The field of ionic liquids continues to grow, and become one of the most important branches of science. It appears to be at a point where research and industry can work together in a new way of thinking for green chemistry and sustainable production. 2018 xx, 193 urn:nbn:de:kobv:517-opus4-418950 Institut für Chemie