Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-5100 Dissertation Borchers, Andreas Glaciomarine sedimentation at the continental margin of Prydz Bay, East Antarctica : implications on palaeoenvironmental changes during the Quaternary The Antarctic plays an important role in the global climate system. On the one hand, the Antarctic Ice Sheet is the largest freshwater reservoir on Earth. On the other hand, a major proportion of the global bottom-water formation takes place in Antarctic shelf regions, forcing the global thermohaline circulation. The main goal of this dissertation is to provide new insights into the dynamics and stability of the EAIS during the Quaternary. Additionally, variations in the activity of bottom-water formation and their causes are investigated. The dissertation is a German contribution to the International Polar Year 2007/ 2008 and was funded by the 'Deutsche Forschungsgesellschaft' (DFG) within the scope of priority program 1158 'Antarctic research with comparative studies in Arctic ice regions'. During RV Polarstern expedition ANT-XXIII/9, glaciomarine sediments were recovered from the Prydz Bay-Kerguelen region. Prydz Bay is a key region for the study of East EAIS dynamics, as 16% of the EAIS are drained through the Lambert Glacier into the bay. Thereby, the glacier transports sediment into Prydz Bay which is then further distributed by calving icebergs or by current transport. The scientific approach of this dissertation is the reconstruction of past glaciomarine environments to infer on the response of the Lambert Glacier-Amery Ice Shelf system to climate shifts during the Quaternary. To characterize the depositional setting, sedimentological methods are used and statistical analyses are applied. Mineralogical and (bio)geochemical methods provide a means to reconstruct sediment provenances and to provide evidence on changes in the primary production in the surface water column. Age-depth models were constructed based on palaeomagnetic and palaeointensity measurements, diatom stratigraphy and radiocarbon dating. Sea-bed surface sediments in the investigation area show distinct variations in terms of their clay minerals and heavy-mineral assemblages. Considerable differences in the mineralogical composition of surface sediments are determined on the continental shelf. Clay minerals as well as heavy minerals provide useful parameters to differentiate between sediments which originated from erosion of crystalline rocks and sediments originating from Permo-Triassic deposits. Consequently, mineralogical parameters can be used to reconstruct the provenance of current-transported and ice-rafted material. The investigated sediment cores cover the time intervals of the last 1.4 Ma (continental slope) and the last 12.8 cal. ka BP (MacRobertson shelf). The sediment deposits were mainly influenced by glacial and oceanographic processes and further by biological activity (continental shelf), meltwater input and possibly gravitational transport. Sediments from the continental slope document two major deglacial events: the first deglaciation is associated with the mid-Pleistocene warming recognized around the Antarctic. In Prydz Bay, the Lambert Glacier-Amery Ice Shelf retreated far to the south and high biogenic productivity commenced or biogenic remains were better preserved due to increased sedimentation rates. Thereafter, stable glacial conditions continued until 400 - 500 ka BP. Calving of icebergs was restricted to the western part of the Lambert Glacier. The deeper bathymetry in this area allows for floating ice shelf even during times of decreased sea-level. Between 400 - 500 ka BP and the last interglacial (marine isotope stage 5) the glacier was more dynamic. During or shortly after the last interglacial the LAIS retreated again due to sea-level rise of 6 - 9 m. Both deglacial events correlate with a reduction in the thickness of ice masses in the Prince Charles Mountains. It indicates that a disintegration of the Amery Ice Shelf possibly led to increased drainage of ice masses from the Prydz Bay hinterland. A new end-member modelling algorithm was successfully applied on sediments from the MacRobertson shelf used to unmix the sand grain size fractions sorted by current activity and ice transport, respectively. Ice retreat on MacRobertson Shelf commenced 12.8 cal. ka BP and ended around 5.5 cal. ka BP. During the Holocene, strong fluctuations of the bottomwater activity were observed, probably related to variations of sea-ice formation in the Cape Darnley polynya. Increased activity of bottom-water flow was reconstructed at transitions from warm to cool conditions, whereas bottom-water activity receded during the mid- Holocene climate optimum. It can be concluded that the Lambert Glacier-Amery Ice Shelf system was relatively stable in terms of climate variations during the Quaternary. In contrast, bottom-water formation due to polynya activity was very sensitive to changes in atmospheric forcing and should gain more attention in future research. 2010 urn:nbn:de:kobv:517-opus-52620 Institut für Geowissenschaften