Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-59769 Dissertation Parry, Victor From individual to community level: Assessing swimming movement, dispersal and fitness of zooplankton Movement is a mechanism that shapes biodiversity patterns across spatialtemporal scales. Thereby, the movement process affects species interactions, population dynamics and community composition. In this thesis, I disentangled the effects of movement on the biodiversity of zooplankton ranging from the individual to the community level. On the individual movement level, I used video-based analysis to explore the implication of movement behavior on preypredator interactions. My results showed that swimming behavior was of great importance as it determined their survival in the face of predation. The findings also additionally highlighted the relevance of the defense status/morphology of prey, as it not only affected the prey-predator relationship by the defense itself but also by plastic movement behavior. On the community movement level, I used a field mesocosm experiment to explore the role of dispersal (time i.e., from the egg bank into the water body and space i.e., between water bodies) in shaping zooplankton metacommunities. My results revealed that priority effects and taxon-specific dispersal limitation influenced community composition. Additionally, different modes of dispersal also generated distinct community structures. The egg bank and biotic vectors (i.e. mobile links) played significant roles in the colonization of newly available habitat patches. One crucial aspect that influences zooplankton species after arrival in new habitats is the local environmental conditions. By using common garden experiments, I assessed the performance of zooplankton communities in their home vs away environments in a group of ponds embedded within an agricultural landscape. I identified environmental filtering as a driving factor as zooplankton communities from individual ponds developed differently in their home and away environments. On the individual species level, there was no consistent indication of local adaptation. For some species, I found a higher abundance/fitness in their home environment, but for others, the opposite was the case, and some cases were indifferent. Overall, the thesis highlights the links between movement and biodiversity patterns, ranging from the individual active movement to the community level. 2023 ix, 118 urn:nbn:de:kobv:517-opus4-597697 10.25932/publishup-59769 Institut für Biochemie und Biologie OPUS4-6648 Dissertation May, Felix Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated "island communities" with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33% - 60% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes. 2013 urn:nbn:de:kobv:517-opus-68444 Institut für Biochemie und Biologie OPUS4-58283 Dissertation Leins, Johannes A. Combining model detail with large scales The global climate crisis is significantly contributing to changing ecosystems, loss of biodiversity and is putting numerous species on the verge of extinction. In principle, many species are able to adapt to changing conditions or shift their habitats to more suitable regions. However, change is progressing faster than some species can adjust, or potential adaptation is blocked and disrupted by direct and indirect human action. Unsustainable anthropogenic land use in particular is one of the driving factors, besides global heating, for these ecologically critical developments. Precisely because land use is anthropogenic, it is also a factor that could be quickly and immediately corrected by human action. In this thesis, I therefore assess the impact of three climate change scenarios of increasing intensity in combination with differently scheduled mowing regimes on the long-term development and dispersal success of insects in Northwest German grasslands. The large marsh grasshopper (LMG, Stethophyma grossum, Linné 1758) is used as a species of reference for the analyses. It inhabits wet meadows and marshes and has a limited, yet fairly good ability to disperse. Mowing and climate conditions affect the development and mortality of the LMG differently depending on its life stage. The specifically developed simulation model HiLEG (High-resolution Large Environmental Gradient) serves as a tool for investigating and projecting viability and dispersal success under different climate conditions and land use scenarios. It is a spatially explicit, stage- and cohort-based model that can be individually configured to represent the life cycle and characteristics of terrestrial insect species, as well as high-resolution environmental data and the occurrence of external disturbances. HiLEG is a freely available and adjustable software that can be used to support conservation planning in cultivated grasslands. In the three case studies of this thesis, I explore various aspects related to the structure of simulation models per se, their importance in conservation planning in general, and insights regarding the LMG in particular. It became apparent that the detailed resolution of model processes and components is crucial to project the long-term effect of spatially and temporally confined events. Taking into account conservation measures at the regional level has further proven relevant, especially in light of the climate crisis. I found that the LMG is benefiting from global warming in principle, but continues to be constrained by harmful mowing regimes. Land use measures could, however, be adapted in such a way that they allow the expansion and establishment of the LMG without overly affecting agricultural yields. Overall, simulation models like HiLEG can make an important contribution and add value to conservation planning and policy-making. Properly used, simulation results shed light on aspects that might be overlooked by subjective judgment and the experience of individual stakeholders. Even though it is in the nature of models that they are subject to limitations and only represent fragments of reality, this should not keep stakeholders from using them, as long as these limitations are clearly communicated. Similar to HiLEG, models could further be designed in such a way that not only the parameterization can be adjusted as required, but also the implementation itself can be improved and changed as desired. This openness and flexibility should become more widespread in the development of simulation models. 2023 xv, 168 urn:nbn:de:kobv:517-opus4-582837 10.25932/publishup-58283 Extern