Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-6175 Dissertation Makarava, Natallia Bayesian estimation of self-similarity exponent Estimation of the self-similarity exponent has attracted growing interest in recent decades and became a research subject in various fields and disciplines. Real-world data exhibiting self-similar behavior and/or parametrized by self-similarity exponent (in particular Hurst exponent) have been collected in different fields ranging from finance and human sciencies to hydrologic and traffic networks. Such rich classes of possible applications obligates researchers to investigate qualitatively new methods for estimation of the self-similarity exponent as well as identification of long-range dependencies (or long memory). In this thesis I present the Bayesian estimation of the Hurst exponent. In contrast to previous methods, the Bayesian approach allows the possibility to calculate the point estimator and confidence intervals at the same time, bringing significant advantages in data-analysis as discussed in this thesis. Moreover, it is also applicable to short data and unevenly sampled data, thus broadening the range of systems where the estimation of the Hurst exponent is possible. Taking into account that one of the substantial classes of great interest in modeling is the class of Gaussian self-similar processes, this thesis considers the realizations of the processes of fractional Brownian motion and fractional Gaussian noise. Additionally, applications to real-world data, such as the data of water level of the Nile River and fixational eye movements are also discussed. 2012 urn:nbn:de:kobv:517-opus-64099 Institut für Physik und Astronomie OPUS4-60092 Dissertation Luna, Lisa Victoria Rainfall-triggered landslides: conditions, prediction, and warning Rainfall-triggered landslides are a globally occurring hazard that cause several thousand fatalities per year on average and lead to economic damages by destroying buildings and infrastructure and blocking transportation networks. For people living and governing in susceptible areas, knowing not only where, but also when landslides are most probable is key to inform strategies to reduce risk, requiring reliable assessments of weather-related landslide hazard and adequate warning. Taking proper action during high hazard periods, such as moving to higher levels of houses, closing roads and rail networks, and evacuating neighborhoods, can save lives. Nevertheless, many regions of the world with high landslide risk currently lack dedicated, operational landslide early warning systems. The mounting availability of temporal landslide inventory data in some regions has increasingly enabled data-driven approaches to estimate landslide hazard on the basis of rainfall conditions. In other areas, however, such data remains scarce, calling for appropriate statistical methods to estimate hazard with limited data. The overarching motivation for this dissertation is to further our ability to predict rainfall-triggered landslides in time in order to expand and improve warning. To this end, I applied Bayesian inference to probabilistically quantify and predict landslide activity as a function of rainfall conditions at spatial scales ranging from a small coastal town, to metropolitan areas worldwide, to a multi-state region, and temporal scales from hourly to seasonal. This thesis is composed of three studies. In the first study, I contributed to developing and validating statistical models for an online landslide warning dashboard for the small town of Sitka, Alaska, USA. We used logistic and Poisson regressions to estimate daily landslide probability and counts from an inventory of only five reported landslide events and 18 years of hourly precipitation measurements at the Sitka airport. Drawing on community input, we established two warning thresholds for implementation in the dashboard, which uses observed rainfall and US National Weather Service forecasts to provide real-time estimates of landslide hazard. In the second study, I estimated rainfall intensity-duration thresholds for shallow landsliding for 26 cities worldwide and a global threshold for urban landslides. I found that landslides in urban areas occurred at rainfall intensities that were lower than previously reported global thresholds, and that 31% of urban landslides were triggered during moderate rainfall events. However, landslides in cities with widely varying climates and topographies were triggered above similar critical rainfall intensities: thresholds for 77% of cities were indistinguishable from the global threshold, suggesting that urbanization may harmonize thresholds between cities, overprinting natural variability. I provide a baseline threshold that could be considered for warning in cities with limited landslide inventory data. In the third study, I investigated seasonal landslide response to annual precipitation patterns in the Pacific Northwest region, USA by using Bayesian multi-level models to combine data from five heterogeneous landslide inventories that cover different areas and time periods. I quantitatively confirmed a distinctly seasonal pattern of landsliding and found that peak landslide activity lags the annual precipitation peak. In February, at the height of the landslide season, landslide intensity for a given amount of monthly rainfall is up to ten times higher than at the season onset in November, underlining the importance of antecedent seasonal hillslope conditions. Together, these studies contributed actionable, objective information for landslide early warning and examples for the application of Bayesian methods to probabilistically quantify landslide hazard from inventory and rainfall data. 2023 xix, 119 Durch Regenfälle ausgelöste Erdrutsche: Bedingungen, Vorhersage und Warnung urn:nbn:de:kobv:517-opus4-600927 10.25932/publishup-60092 Institut für Umweltwissenschaften und Geographie