Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-52536 Review Fudickar, Werner; Linker, Torsten Release of Singlet Oxygen from Organic Peroxides under Mild Conditions Singlet oxygen can be released in the dark in nearly quantitative yield from endoperoxides of naphthalenes, anthracenes and pyridones as an alternative to its generation by photosensitization. Recently, new donor systems have been designed which operate at very low temperatures but which are prepared from their parent forms at acceptable rates. Enhancement of the reactivity of donors is conveniently achieved by the design of the substitution pattern or through the use of plasmonic heating of nanoparticle-bound donors. The most important aim of these donor molecules is to transfer singlet oxygen in a controlled and directed manner to a target. Low temperatures and the linking between donors and acceptors reduce the random walk of oxygen and may force an attack at the desired position. By using chiral donor systems, new stereocenters might be introduced into prochiral acceptors. Weinheim Wiley-VCH 2018 11 ChemPhotoChem 2 7 548 558 10.1002/cptc.201700235 Institut für Chemie OPUS4-38882 Wissenschaftlicher Artikel Klaper, Matthias; Linker, Torsten New Singlet Oxygen Donors Based on Naphthalenes: Synthesis, Physical Chemical Data, and Improved Stability Singlet oxygen donors are of current interest for medical applications, but suffer from a short half-life leading to low singlet oxygen yields and problems with storage. We have synthesized more than 25new singlet oxygen donors based on differently substituted naphthalenes in only a few steps. The influence of functional groups on the reaction rate of the photooxygenations, thermolysis, half-life, and singlet oxygen yield has been thoroughly studied. We determined various thermodynamic data and compared them with density functional calculations. Interestingly, remarkable stabilities of functional groups during the photooxygenations and stabilizing effects for some endoperoxides during the thermolysis have been found. Furthermore, we give evidence for a partly concerted and partly stepwise thermolysis mechanism leading to singlet and triplet oxygen, respectively. Our results might be interesting for dark oxygenations and future applications in medicine. Weinheim Wiley-VCH 2015 9 Chemistry - a European journal 21 23 8569 8577 10.1002/chem.201500146 Institut für Chemie