Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-48499 Wissenschaftlicher Artikel Broeker, Nina K.; Roske, Yvette; Valleriani, Angelo; Stephan, Mareike Sophia; Andres, Dorothee; Koetz, Joachim; Heinemann, Udo; Barbirz, Stefanie Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches. Bethesda American Society for Biochemistry and Molecular Biology 2019 11 The journal of biological chemistry 294 31 11751 11761 10.1074/jbc.RA119.008133 Institut für Biochemie und Biologie OPUS4-52163 Wissenschaftlicher Artikel Kunstmann, Ruth Sonja; Gohlke, Ulrich; Bröker, Nina Kristin; Roske, Yvette; Heinemann, Udo; Santer, Mark; Barbirz, Stefanie Solvent networks tune thermodynamics of oligosaccharide complex formation in an extended protein binding site The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site. Washington American Chemical Society 2018 9 Journal of the American Chemical Society 140 33 10447 10455 10.1021/jacs.8b03719 Institut für Biochemie und Biologie OPUS4-45133 Wissenschaftlicher Artikel Kang, Yu; Gohlke, Ulrich; Engström, Olof; Hamark, Christoffer; Scheidt, Tom; Kunstmann, Ruth Sonja; Heinemann, Udo; Widmalm, Göran; Santer, Mark; Barbirz, Stefanie Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein-Polysaccharide Interactions Understanding interactions of bacterial surface polysaccharides with receptor protein scaffolds is important for the development of antibiotic therapies. The corresponding protein recognition domains frequently form low-affinity complexes with polysaccharides that are difficult to address with experimental techniques due to the conformational flexibility of the polysaccharide. In this work, we studied the tailspike protein (TSP) of the bacteriophage Sf6. Sf6TSP binds and hydrolyzes the high-rhamnose, serotype Y O-antigen polysaccharide of the Gram-negative bacterium Shigella flexneri (S. flexneri) as a first step of bacteriophage infection. Spectroscopic analyses and enzymatic cleavage assays confirmed that Sf6TSP binds long stretches of this polysaccharide. Crystal structure analysis and saturation transfer difference (STD) NMR spectroscopy using an enhanced method to interpret the data permitted the detailed description of affinity contributions and flexibility in an Sf6TSP-octasaccharide complex. Dodecasaccharide fragments corresponding to three repeating units of the O-antigen in complex with Sf6TSP were studied computationally by molecular dynamics simulations. They showed that distortion away from the low-energy solution conformation found in the octasaccharide complex is necessary for ligand binding. This is in agreement with a weak-affinity functional polysaccharide protein contact that facilitates correct placement and thus hydrolysis of the polysaccharide close to the catalytic residues. Our simulations stress that the flexibility of glycan epitopes together with a small number of specific protein contacts provide the driving force for Sf6TSP-polysaccharide complex formation in an overall weak-affinity interaction system. Washington American Chemical Society 2016 10 Journal of the American Chemical Society 138 9109 9118 10.1021/jacs.6b00240 Institut für Biochemie und Biologie OPUS4-37906 Wissenschaftlicher Artikel Seul, Anait; Müller, Jürgen J.; Andres, Dorothee; Stettner, Eva; Heinemann, Udo; Seckler, Robert Bacteriophage P22 tailspike: structure of the complete protein and function of the interdomain linker Attachment of phages to host cells, followed by phage DNA ejection, represents the first stage of viral infection of bacteria. Salmonella phage P22 has been extensively studied, serving as an experimental model for bacterial infection by phages. P22 engages bacteria by binding to the sugar moiety of lipopolysaccharides using the viral tailspike protein for attachment. While the structures of the N-terminal particle-binding domain and the major receptor-binding domain of the tailspike have been analyzed individually, the three-dimensional organization of the intact protein, including the highly conserved linker region between the two domains, remained unknown. A single amino-acid exchange in the linker sequence made it possible to crystallize the full-length protein. Two crystal structures of the linker region are presented: one attached to the N-terminal domain and the other present within the complete tailspike protein. Both retain their biological function, but the mutated full-length tailspike displays a retarded folding pathway. Fitting of the full-length tailspike into a published cryo-electron microscopy map of the P22 virion requires an elastic distortion of the crystal structure. The conservation of the linker suggests a role in signal transmission from the distal tip of the molecule to the phage head, eventually leading to DNA ejection. Hoboken Wiley-Blackwell 2014 10 Acta crystallographica : Section D, Biological crystallography 70 1336 1345 10.1107/S1399004714002685 Institut für Biochemie und Biologie OPUS4-35130 Wissenschaftlicher Artikel Andres, Dorothee; Gohlke, Ulrich; Bröker, Nina Kristin; Schulze, Stefan; Rabsch, Wolfgang; Heinemann, Udo; Barbirz, Stefanie; Seckler, Robert An essential serotype recognition pocket on phage P22 tailspike protein forces Salmonella enterica serovar Paratyphi A O-antigen fragments to bind as nonsolution conformers Bacteriophage P22 recognizes O-antigen polysaccharides of Salmonella enterica subsp. enterica (S.) with its tailspike protein (TSP). In the serovars S. Typhimurium, S. Enteritidis, and S. Paratyphi A, the tetrasaccharide repeat units of the respective O-antigens consist of an identical main chain trisaccharide but different 3,6-dideoxyhexose substituents. Here, the epimers abequose, tyvelose and paratose determine the specific serotype. P22 TSP recognizes O-antigen octasaccharides in an extended binding site with a single 3,6-dideoxyhexose binding pocket. We have isolated S. Paratyphi A octasaccharides which were not available previously and determined the crystal structure of their complex with P22 TSP. We discuss our data together with crystal structures of complexes with S. Typhimurium and S. Enteritidis octasaccharides determined earlier. Isothermal titration calorimetry showed that S. Paratyphi A octasaccharide binds P22 TSP less tightly, with a difference in binding free energy of similar to 7 kJ mol(-1) at 20 degrees C compared with S. Typhimurium and S. Enteritidis octasaccharides. Individual protein-carbohydrate contacts were probed by amino acid replacements showing that the dideoxyhexose pocket contributes to binding of all three serotypes. However, S. Paratyphi A octasaccharides bind in a conformation with an energetically unfavorable phi/epsilon glycosidic bond angle combination. In contrast, octasaccharides from the other serotypes bind as solution-like conformers. Two water molecules are conserved in all P22 TSP complexes with octasaccharides of different serotypes. They line the dideoxyhexose binding pocket and force the S. Paratyphi A octasaccharides to bind as nonsolution conformers. This emphasizes the role of solvent as part of carbohydrate binding sites. Cary Oxford Univ. Press 2013 9 Glycobiology 23 4 486 494 10.1093/glycob/cws224 Institut für Biochemie und Biologie OPUS4-35431 Wissenschaftlicher Artikel Bröker, Nina Kristin; Gohlke, Ulrich; Müller, Jürgen J.; Uetrecht, Charlotte; Heinemann, Udo; Seckler, Robert; Barbirz, Stefanie Single amino acid exchange in bacteriophage HK620 tailspike protein results in thousand-fold increase of its oligosaccharide affinity Bacteriophage HK620 recognizes and cleaves the O-antigen polysaccharide of Escherichia coli serogroup O18A1 with its tailspike protein (TSP). HK620TSP binds hexasaccharide fragments with low affinity, but single amino acid exchanges generated a set of high-affinity mutants with submicromolar dissociation constants. Isothermal titration calorimetry showed that only small amounts of heat were released upon complex formation via a large number of direct and solvent-mediated hydrogen bonds between carbohydrate and protein. At room temperature, association was both enthalpy- and entropy-driven emphasizing major solvent rearrangements upon complex formation. Crystal structure analysis showed identical protein and sugar conformers in the TSP complexes regardless of their hexasaccharide affinity. Only in one case, a TSP mutant bound a different hexasaccharide conformer. The extended sugar binding site could be dissected in two regions: first, a hydrophobic pocket at the reducing end with minor affinity contributions. Access to this site could be blocked by a single aspartate to asparagine exchange without major loss in hexasaccharide affinity. Second, a region where the specific exchange of glutamate for glutamine created a site for an additional water molecule. Side-chain rearrangements upon sugar binding led to desolvation and additional hydrogen bonding which define this region of the binding site as the high-affinity scaffold. Cary Oxford Univ. Press 2013 10 Glycobiology 23 1 59 68 10.1093/glycob/cws126 Institut für Biochemie und Biologie OPUS4-36091 Wissenschaftlicher Artikel Andres, Dorothee; Roske, Yvette; Doering, Carolin; Heinemann, Udo; Seckler, Robert; Barbirz, Stefanie Tail morphology controls DNA release in two Salmonella phages with one lipopolysaccharide receptor recognition system Bacteriophages use specific tail proteins to recognize host cells. It is still not understood to molecular detail how the signal is transmitted over the tail to initiate infection. We have analysed in vitro DNA ejection in long-tailed siphovirus 9NA and short-tailed podovirus P22 upon incubation with Salmonella typhimurium lipopolysaccharide (LPS). We showed for the first time that LPS alone was sufficient to elicit DNA release from a siphovirus in vitro. Crystal structure analysis revealed that both phages use similar tailspike proteins for LPS recognition. Tailspike proteins hydrolyse LPS O antigen to position the phage on the cell surface. Thus we were able to compare in vitro DNA ejection processes from two phages with different morphologies with the same receptor under identical experimental conditions. Siphovirus 9NA ejected its DNA about 30 times faster than podovirus P22. DNA ejection is under control of the conformational opening of the particle and has a similar activation barrier in 9NA and P22. Our data suggest that tail morphology influences the efficiencies of particle opening given an identical initial receptor interaction event. Hoboken Wiley-Blackwell 2012 10 Molecular microbiology 83 6 1244 1253 10.1111/j.1365-2958.2012.08006.x Institut für Biochemie und Biologie OPUS4-32306 Wissenschaftlicher Artikel Barbirz, Stefanie; Müller, Jürgen J.; Uetrecht, Charlotte; Clark, Alvin J.; Heinemann, Udo; Seckler, Robert Crystal structure of Escherichia coli phage HK620 tailspike : podoviral tailspike endoglycosidase modules are evolutionarily related Bacteriophage HK620 infects Escherichia coli H and is closely related to Shigella phage Sf6 and Salmonella phage P22. All three Podoviridae recognize and cleave their respective host cell receptor polysaccharide by homotrimeric tailspike proteins. The three proteins exhibit high sequence identity in the 110 residues of their N-terminal particle- binding domains, but no apparent sequence similarity in their major, receptor-binding parts. We have biochemically characterized the receptor-binding part of HK620 tailspike and determined its crystal structure to 1.38 Å resolution. Its major domain is a right-handed parallel ;-helix, as in Sf6 and P22 tailspikes. HK620 tailspike has endo-N- acetylglucosaminidase activity and produces hexasaccharides of an O18A1-type O-antigen. As indicated by the structure of a hexasaccharide complex determined at 1.6 Å resolution, the endoglycosidase-active sites are located intramolecularly, as in P22, and not between subunits, as in Sf6 tailspike. In contrast, the extreme C-terminal domain of HK620 tailspike forms a ;-sandwich, as in Sf6 and unlike P22 tailspike. Despite the different folds, structure-based sequence alignments of the C-termini reveal motifs conserved between the three proteins. We propose that the tailspike genes of P22, Sf6 and HK620 have a common precursor and are not mosaics of unrelated gene fragments. 2008 Institut für Biochemie und Biologie OPUS4-32308 Wissenschaftlicher Artikel Müller, Jürgen J.; Barbirz, Stefanie; Heinle, Karolin; Freiberg, Alexander; Seckler, Robert; Heinemann, Udo An intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6 Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 Å crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed ; helix. In the trimer of Sf6 TSP, the parallel ; helices form a left-handed, coiled;; coil with a pitch of 340 Å. The C-terminal domain consists of a ; sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two ;-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture. 2008 10.1016/j.str.2008.01.019 Institut für Biochemie und Biologie OPUS4-15307 Wissenschaftlicher Artikel Roske, Y.; Sunna, A.; Pfeil, Wolfgang; Heinemann, Udo High-resolution crystal structures of Caldiceflulosiruptor strain Rt8B.4 carbohydrate-binding module CBM27-1 and its complex with mannohexaose Carbohydrate-binding modules (CBMs) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. Despite the large number of putative CBMs being identified by amino acid sequence alignments, only few representatives have been experimentally shown to have a carbohydrate-binding function. Caldicellulosiruptor strain Rt8B.4 Man26 is a thermostable modular glycoside hydrolase beta-mannanase which contains two non-catalytic modules in tandem at its N terminus. These modules were recently shown to function primarily as beta- mannan-binding modules and have accordingly been classified as members of a novel family of CBMs, family 27. The N- terminal CBM27 (CsCBM27-1) of Man26 from Caldicellulosiruptor Rt8B.4 displays high-binding affinity towards mannohexaose with a K-a of 1 x 10(7) M-1. Accordingly, the high-resolution crystal structures of CsCBM27-1 native and its mannohexaose complex were solved at 1.55 Angstrom and 1.06 Angstrom resolution, respectively. In the crystal, CsCBM27-1 shows the typical beta-sandwich jellyroll fold observed in other CBMs with a single metal ion bound, which was identified as calcium. The crystal structures reveal that the overall fold of CsCBM27-1 remains virtually unchanged upon sugar binding and that binding is mediated by three solvent-exposed tryptophan residues and few direct hydrogen bonds. Based on binding affinity and thermal unfolding experiments this structural calcium is shown to play a role in the thermal stability of CsCBM27-1 at high temperatures. The higher binding affinity of CsCBM27-1 to mannooligosaccharides when compared to other members of CBM family 27 might be explained by the different orientation of the residues forming the "aromatic platform" and by differences in the length of loops. Finally, evidence is presented, on the basis of fold similarities and the retention of the position of conserved motifs and a calcium ion, for the consolidation of related CBM families into a superfamily of CBMs. (C) 2004 Elsevier Ltd. All rights reserved 2004 Institut für Biochemie und Biologie