Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-45280 Wissenschaftlicher Artikel Steeples, Elliot; Kelling, Alexandra; Schilde, Uwe; Esposito, Davide Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water. Cambridge Royal Society of Chemistry 2016 9 New journal of chemistry 40 4922 4930 10.1039/c5nj03337c Institut für Chemie OPUS4-39448 misc Steeples, Elliot; Kelling, Alexandra; Schilde, Uwe; Esposito, Davide Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water. 2016 9 4922 4930 urn:nbn:de:kobv:517-opus4-394488 Institut für Chemie OPUS4-10082 Wissenschaftlicher Artikel Schilde, Uwe; Kelling, Alexandra; Umbreen, Sumaira; Linker, Torsten Crystal structures of three bicyclic carbohydrate derivatives The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis(acetyloxy)-7-oxo-2-oxabicyclo- [4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acetyloxy-7- hydroxyimino-2-oxobicyclo[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5- yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings. Chester IUCR 2016 5 Acta crystallographica Section E ; Crystallographic communications 72 12 1839 1844 10.1107/S2056989016018727 Institut für Chemie OPUS4-10083 misc Schilde, Uwe; Kelling, Alexandra; Umbreen, Sumaira; Linker, Torsten Crystal structures of three bicyclic carbohydrate derivatives The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings. 2016 6 urn:nbn:de:kobv:517-opus4-100833 Institut für Chemie OPUS4-44688 Wissenschaftlicher Artikel Schilde, Uwe; Kelling, Alexandra; Umbreen, Sumaira; Linker, Torsten Crystal structures of three bicyclic carbohydrate derivatives The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis(acetyloxy)-7-oxo-2-oxabicyclo-[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acetyloxy-7-hydroxyimino-2-oxobicyclo[4.2.0] octan-4-yl acetate, C11H15NO6, (II), and [(3aR, 5R, 6R, 7R, 7aS)-6,7-bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5-yl] methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings. Chester International Union of Crystallography 2016 27 Acta crystallographica, Section E, Crystallographic communications 72 1839 + 10.1107/S2056989016018727 Institut für Chemie OPUS4-45904 Wissenschaftlicher Artikel Strauch, Peter; Kossmann, Alexander; Kelling, Alexandra; Schilde, Uwe EPR on bis(1,2-dithiosquarato)cuprate(II) in the bis(1,2-dithiosquarato)nickelate(II) host lattice - structure and spectroscopy EPR spectroscopy is a well suited analytical tool to monitor the electronic situation around paramagnetic metal centres as copper(II) and therefore the structural influences on the paramagnetic ion. 1,2-Dithiosquaratometalates are available by direct synthesis from metal salts with dipotassium-1,2-dithiosquarate and the appropriate counter cations. Synthesis and characterisation of bis(benzyltributylammonium)1,2-dithiosquaratonickelate(II), (BzlBu(3)N)(2)[Ni(dtsq)(2)], and bis(benzyltributylammonium)1,2-dithiosquaratocuprate(II), (BzlBu(3)N)(2)[Cu(dtsq)(2)], with benzyltributylammonium as the counter ion is reported and the X-ray structures of two complexes, (BzlBu(3)N)(2)[Ni(dtsq)(2)] and (BzlBu(3)N)(2)[Cu(dtsq)(2)], are presented. Both complexes, crystallising in the monoclinic space group P2(1)/c, are isostructural with only small differences in the coordination sphere due to the different metal ions. The diamagnetic nickel complex is therefore well suited as a host lattice for the paramagnetic Cu(II) complex to measure EPR for additional structural information. (c) 2015 Institute of Chemistry, Slovak Academy of Sciences Berlin De Gruyter 2016 8 Chemical papers 70 61 68 10.1515/chempap-2015-0154 Institut für Chemie OPUS4-45884 Wissenschaftlicher Artikel Brietzke, Thomas Martin; Kelling, Alexandra; Schilde, Uwe; Mickler, Wulfhard; Holdt, Hans-Jürgen Heterodinuclear Ruthenium(II) Complexes of the Bridging Ligand 1,6,7,12-Tetraazaperylene with Iron(II), Cobalt(II), Nickel(II), as well as Palladium(II) and Platinum(II) The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12-tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) ligand, yielding complexes of the general formula [(L-N4Me2)Ru(mu-tape)M(L-N4Me2)](ClO4)(2)(PF6)(2) with M = Fe {[2](ClO4)(2)(PF6)(2)}, Co {[3](ClO4)(2)(PF6)(2)}, and Ni {[4](ClO4)(2)(PF6)(2)}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)- and platinum(II)-dichloride [(bpy)(2)Ru(-tape)PdCl2](PF6)(2) {[5](PF6)(2)} and [(dmbpy)(2)Ru(-tape)PtCl2](PF6)(2) {[6](PF6)(2)}, respectively were also prepared. The molecular structures of the complex cations [2](4+) and [4](4+) were discussed on the basis of the X-ray structures of [2](ClO4)(4)MeCN and [4](ClO4)(4)MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono- and homodinuclear ruthenium(II) complexes of the tape bridging ligand. Weinheim Wiley-VCH 2016 6 Zeitschrift für anorganische und allgemeine Chemie 642 8 13 10.1002/zaac.201500645 Institut für Chemie OPUS4-45851 Wissenschaftlicher Artikel Baier, Heiko; Kelling, Alexandra; Schilde, Uwe; Holdt, Hans-Jürgen Investigation of the Catalytic Activity of a 2-Phenylidenepyridine Palladium(II) Complex Bearing 4,5-Dicyano-1,3-bis(mesityl)imidazol-2-ylidene in the Mizoroki-Heck Reaction The phenylidenepyridine (ppy) palladacycles [PdCl(ppy)(IMes)] (4) [IMes = 1,3-bis(mesityl) imidazol-2-ylidene] and [PdCl(ppy){(CN)(2)IMes}] (6) [(CN)(2)IMes = 4,5-dicyano-1,3-bis(mesityl) imidazol-2-ylidene] were prepared by facile two step syntheses, starting with the reaction of palladium(II) chloride with 2-phenylpyridine followed by subsequent addition of the NHC ligand to the precatalyst precursor [PdCl(ppy)](2). Suitable crystals for the X-ray analysis of the complexes 4 and 6 were obtained. It was shown that 6 has a shorter NHC-palladium bond than the IMes complex 4. The difference of the palladium carbene bond lengths based on the higher pi-acceptor strength of (CN)(2)IMes in comparison to IMes. Thus, (CN)(2)IMes should stabilize the catalytically active central palladium atom better than IMes. As a measure for the pi-acceptor strength of (CN)(2)IMes compared to IMes, the selone (CN)(2)IMes center dot Se (7) was prepared and characterized by Se-77-NMR spectroscopy. The pi-acceptor strength of 7 was illuminated by the shift of its Se-77-NMR signal. The Se-77-NMR signal of 7 was shifted to much higher frequencies than the Se-77-NMR signal of IMes center dot Se. Catalytic experiments using the Mizoroki-Heck reaction of aryl chlorides with n-butyl acrylate showed that 6 is the superior performer in comparison to 4. Using complex 6, an extensive substrate screening of 26 different aryl bromides with n-butyl acrylate was performed. Complex 6 is a suitable precatalyst for para-substituted aryl bromides. The catalytically active species was identified by mercury poisoning experiments to be palladium nanoparticles. Weinheim Wiley-VCH 2016 8 Zeitschrift für anorganische und allgemeine Chemie 642 140 147 10.1002/zaac.201500625 Institut für Chemie OPUS4-45545 Wissenschaftlicher Artikel Zehbe, Kerstin; Kollosche, Matthias; Lardong, Sebastian; Kelling, Alexandra; Schilde, Uwe; Taubert, Andreas Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs. Basel MDPI 2016 16 International journal of molecular sciences 17 10.3390/ijms17030391 Institut für Physik und Astronomie OPUS4-45623 Wissenschaftlicher Artikel Wessig, Pablo; Gerngross, Maik; Freyse, Daniel; Bruhn, P.; Przezdziak, Marc; Schilde, Uwe; Kelling, Alexandra Molecular Rods Based on Oligo-spiro-thioketals We report on an extension of the previously established concept of oligospiroketal (OSK) rods by replacing a part or all ketal moieties by thioketals leading to oligospirothioketal (OSTK) rods. In this way, some crucial problems arising from the reversible formation of ketals are circumvented. Furthermore, the stability of the rods toward hydrolysis is considerably improved. To successfully implement this concept, we first developed a number of new oligothiol building blocks and improved the synthetic accessibility of known oligothiols, respectively. Another advantage of thioacetals is that terephthalaldehyde (TAA) sleeves, which are too flexible in the case of acetals can be used in OSTK rods. The viability of the OSTK approach was demonstrated by the successful preparation of some OSTK rods with a length of some nanometers. Washington American Chemical Society 2016 12 The journal of organic chemistry 81 1125 1136 10.1021/acs.joc.5b02670 Institut für Chemie