Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-45210 Review Reverey, Florian; Großart, Hans-Peter; Premke, Katrin; Lischeid, Gunnar Carbon and nutrient cycling in kettle hole sediments depending on hydrological dynamics: a review Kettle holes as a specific group of isolated, small lentic freshwater systems (LFS) often are (i) hot spots of biogeochemical cycling and (ii) exposed to frequent sediment desiccation and rewetting. Their ecological functioning is greatly determined by immanent carbon and nutrient transformations. The objective of this review is to elucidate effects of a changing hydrological regime (i.e., dry-wet cycles) on carbon and nutrient cycling in kettle hole sediments. Generally, dry-wet cycles have the potential to increase C and N losses as well as P availability. However, their duration and frequency are important controlling factors regarding direction and intensity of biogeochemical and microbiological responses. To evaluate drought impacts on sediment carbon and nutrient cycling in detail requires the context of the LFS hydrological history. For example, frequent drought events induce physiological adaptation of exposed microbial communities and thus flatten metabolic responses, whereas rare events provoke unbalanced, strong microbial responses. Different potential of microbial resilience to drought stress can irretrievably change microbial communities and functional guilds, gearing cascades of functional responses. Hence, dry-wet events can shift the biogeochemical cycling of organic matter and nutrients to a new equilibrium, thus affecting the dynamic balance between carbon burial and mineralization in kettle holes. Dordrecht Springer 2016 20 Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica 775 1 20 10.1007/s10750-016-2715-9 Institut für Biochemie und Biologie OPUS4-40757 misc Dietrich, Ottfried; Schweigert, Susanne; Steidl, Jörg; Lischeid, Gunnar Effects of data and model simplification on the results of a wetland water resource management model This paper presents the development of a wetland water balance model for use in a large river basin with many different wetlands. The basic model was primarily developed for a single wetland with a complex water management system involving large amounts of specialized input data and water management details. The aim was to simplify the model structure and to use only commonly available data as input for the model, with the least possible loss of accuracy. Results from different variants of the model and data adaptation were tested against results from a detailed model. This shows that using commonly available data and unifying and simplifying the input data is tolerable up to a certain level. The simplification of the model has greater effects on the evaluated water balance components than the data adaptation. Because this simplification was necessary for large-scale use, we suggest that, for reasons of comparability, simpler models should always be applied with uniform data bases for large regions, though these should only be moderately simplified. Further, we recommend using these simplified models only for large-scale comparisons and using more specific, detailed models for investigations on smaller scales. 2016 19 Water urn:nbn:de:kobv:517-opus4-407579 Mathematisch-Naturwissenschaftliche Fakultät OPUS4-45282 Wissenschaftlicher Artikel Dietrich, Ottfried; Schweigert, Susanne; Steidl, Jörg; Lischeid, Gunnar Effects of Data and Model Simplification on the Results of a Wetland Water Resource Management Model This paper presents the development of a wetland water balance model for use in a large river basin with many different wetlands. The basic model was primarily developed for a single wetland with a complex water management system involving large amounts of specialized input data and water management details. The aim was to simplify the model structure and to use only commonly available data as input for the model, with the least possible loss of accuracy. Results from different variants of the model and data adaptation were tested against results from a detailed model. This shows that using commonly available data and unifying and simplifying the input data is tolerable up to a certain level. The simplification of the model has greater effects on the evaluated water balance components than the data adaptation. Because this simplification was necessary for large-scale use, we suggest that, for reasons of comparability, simpler models should always be applied with uniform data bases for large regions, though these should only be moderately simplified. Further, we recommend using these simplified models only for large-scale comparisons and using more specific, detailed models for investigations on smaller scales. Basel MDPI 2016 19 Water 8 10.3390/w8060252 Institut für Geowissenschaften OPUS4-44907 Wissenschaftlicher Artikel Musolff, Andreas; Schmidt, Christian; Rode, Michael; Lischeid, Gunnar; Weise, Stephan M.; Fleckenstein, Jan H. Groundwater head controls nitrate export from an agricultural lowland catchment Solute concentration variability is of fundamental importance for the chemical and ecological state of streams. It is often closely related to discharge variability and can be characterized in terms of a solute export regime. Previous studies, especially in lowland catchments, report that nitrate is often exported with an accretion pattern of increasing concentrations with increasing discharge. Several modeling approaches exist to predict the export regime of solutes from the spatial relationship of discharge generating zones with solute availability in the catchment. For a small agriculturally managed lowland catchment in central Germany, we show that this relationship is controlled by the depth to groundwater table and its temporal dynamics. Principal component analysis of groundwater level time series from wells distributed throughout the catchment allowed derivation of a representative groundwater level time series that explained most of the discharge variability. Groundwater sampling revealed consistently decreasing nitrate concentrations with an increasing thickness of the unsaturated zone. The relationships of depth to groundwater table to discharge and to nitrate concentration were parameterized and integrated to successfully model catchment discharge and nitrate export on the basis of groundwater level variations alone. This study shows that intensive and uniform agricultural land use likely results in a clear and consistent concentration-depth relationship of nitrate, which can be utilized in simple approaches to predict stream nitrate export dynamics at the catchment scale. (C) 2016 Elsevier Ltd. All rights reserved. Oxford Elsevier 2016 13 Advances in water resources 96 95 107 10.1016/j.advwatres.2016.07.003 Institut für Geowissenschaften OPUS4-45245 Wissenschaftlicher Artikel Lischeid, Gunnar; Kalettka, Thomas; Merz, Christoph; Steidl, Jörg Monitoring the phase space of ecosystems: Concept and examples from the Quillow catchment, Uckermark Ecosystem research benefits enormously from the fact that comprehensive data sets of high quality, and covering long time periods are now increasingly more available. However, facing apparently complex interdependencies between numerous ecosystem components, there is urgent need rethinking our approaches in ecosystem research and applying new tools of data analysis. The concept presented in this paper is based on two pillars. Firstly, it postulates that ecosystems are multiple feedback systems and thus are highly constrained. Consequently, the effective dimensionality of multivariate ecosystem data sets is expected to be rather low compared to the number of observables. Secondly, it assumes that ecosystems are characterized by continuity in time and space as well as between entities which are often treated as distinct units. Implementing this concept in ecosystem research requires new tools for analysing large multivariate data sets. This study presents some of them, which were applied to a comprehensive water quality data set from a long-term monitoring program in Northeast Germany in the Uckermark region, one of the LTER-D (Long Term Ecological Research network, Germany) sites. Short-term variability of the kettle hole water samples differed substantially from that of the stream water samples, suggesting different processes generating the dynamics in these two types of water bodies. However, again, this seemed to be due to differing intensities of single processes rather than to completely different processes. We feel that research aiming at elucidating apparently complex interactions in ecosystems could make much more efficient use from now available large monitoring data sets by implementing the suggested concept and using corresponding innovative tools of system analysis. (C) 2015 Elsevier Ltd. All rights reserved. Amsterdam Elsevier 2016 11 Ecological indicators : integrating monitoring, assessment and management 65 55 65 10.1016/j.ecolind.2015.10.067 Institut für Geowissenschaften OPUS4-45162 Wissenschaftlicher Artikel Premke, Katrin; Attermeyer, Katrin; Augustin, Jürgen; Cabezas, Alvaro; Casper, Peter; Deumlich, Detlef; Gelbrecht, Jörg; Gerke, Horst H.; Gessler, Arthur; Großart, Hans-Peter; Hilt, Sabine; Hupfer, Michael; Kalettka, Thomas; Kayler, Zachary; Lischeid, Gunnar; Sommer, Michael; Zak, Dominik The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air-water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems' responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601-617. doi: 10.1002/wat2.1147 Hoboken Wiley 2016 17 Wiley Interdisciplinary Reviews : Water 3 601 617 10.1002/wat2.1147 Institut für Biochemie und Biologie