Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-10436 Dissertation Reschke, Antje Effectiveness of a foot orthosis on muscular activity in functional ankle instability A majority of studies documented a reduced ankle muscle activity, particularly of the peroneus longus muscle (PL), in patients with functional ankle instability (FI). It is considered valid that foot orthoses as well as sensorimotor training have a positive effect on ankle muscle activity in healthy individuals and those with lower limb overuse injuries or flat arched feet (reduced reaction time by sensorimotor exercises; increased ankle muscle amplitude by orthoses use). However, the acute- and long-term influence of foot orthoses on ankle muscle activity in individuals with FI is unknown. AIMS: The present thesis addressed (1a) acute- and (1b) long-term effects of foot orthoses compared to sensorimotor training on ankle muscle activity in patients with FI. (2) Further, it was investigated if the orthosis intervention group demonstrate higher ankle muscle activity by additional short-term use of a measurement in-shoe orthosis (compared to short-term use of "shoe only") after intervention. (3) As prerequisite, it was evaluated if ankle muscle activity can be tested reliably and (4) if this differs between healthy individuals and those with FI. METHODS: Three intervention groups (orthosis group [OG], sensorimotor training group [SMTG], control group [CG]), consisting of both, healthy individuals and those with FI, underwent one longitudinal investigation (randomised controlled trial). Throughout 6 weeks of intervention, OG wore an in-shoe orthosis with a specific "PL stimulation module", whereas SMTG conducted home-based exercises. CG served to measure test-retest reliability of ankle muscle activity (PL, M. tibialis anterior [TA] and M. gastrocnemius medialis [GM]). Pre- and post-intervention, ankle muscle activity (EMG amplitude) was recorded during "normal" unperturbed (NW) and perturbed walking (PW) on a split-belt treadmill (stimulus 200 ms post initial heel contact [IC]) as well as during side cutting (SC), each while wearing "shoes only" and additional measurement in-shoe orthoses (randomized order). Normalized RMS values (100% MVC, meanąSD) were calculated pre- (100-50 ms) and post (200-400 ms) - IC. RESULTS: (3) Test-retest reliability showed a high range of values in healthy individuals and those with FI. (4) Compared to healthy individuals, patients with FI demonstrated lower PL pre-activity during SC, however higher PL pre-activity for NW and PW. (1a) Acute orthoses use did not influence ankle muscle activity. (1b) For most conditions, sensorimotor training was more effective in individuals with FI than long-term orthotic intervention (increased: PL and GM pre-activity and TA reflex-activity for NW, PL pre-activity and TA, PL and GM reflex-activity for SC, PL reflex-activity for PW). However, prolonged orthoses use was more beneficial in terms of an increase in GM pre-activity during SC. For some conditions, long-term orthoses intervention was as effective as sensorimotor training for individuals with FI (increased: PL pre-activity for PW, TA pre-activity for SC, PL and GM reflex-activity for NW). Prolonged orthoses use was also advantageous in healthy individuals (increased: PL and GM pre-activity for NW and PW, PL pre-activity for SC, TA and PL reflex-activity for NW, PL and GM reflex-activity for PW). (2) The orthosis intervention group did not present higher ankle muscle activity by the additional short-term use of a measurement in-shoe orthosis at re-test after intervention. CONCLUSION: High variations of reproducibility reflect physiological variability in muscle activity during gait and therefore deemed acceptable. The main findings confirm the presence of sensorimotor long-term effects of specific foot orthoses in healthy individuals (primary preventive effect) and those with FI (therapeutic effect). Neuromuscular compensatory feedback- as well as anticipatory feedforward adaptation mechanism to prolonged orthoses use, specifically of the PL muscle, underpins the key role of PL in providing essential dynamic ankle joint stability. Due to its advantages over sensorimotor training (positive subjective feedback in terms of comfort, time-and-cost-effectiveness), long-term foot orthoses use can be recommended as an applicable therapy alternative in the treatment of FI. Long-term effect of foot orthoses in a population with FI must be validated in a larger sample size with longer follow-up periods to substantiate the generalizability of the existing outcomes. 2016 XII, 155, XXXVIII urn:nbn:de:kobv:517-opus4-104366 Department Sport- und Gesundheitswissenschaften