Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-3131 Dissertation Hahn, Harald Modularer Ansatz zu multifunktionellen Polymer-Peptid-Fasern Die Kombination von Polymeren mit Peptiden vereint die Eigenschaften beider Stoffklassen miteinander. Dabei können die strukturbildenden Eigenschaften der Peptide genutzt werden, um Polymere zu organisieren. In der vorliegenden Arbeit wurde ein Polymer-Peptid-Konjugat verwendet, das sich in Wasser zu Bändern anordnet. Die treibende Kraft für diesen Prozess ist die Anordnung des Peptidteils zu β-Faltblattstrukturen. Das Polymer-Peptid-Aggregat besitzt einen Peptidkern mit funktionalen Oberflächen, der lateral von einer Polyethylenoxidschale umgeben ist. Durch Änderung der Peptidsequenz war es bisher möglich, die Eigenschaften dieser Fasern zu variieren. In der Arbeit wird ein modularer Ansatz zur vielfältigen Modifizierung einer Polymer-Peptid-Faser entwickelt. So ist es möglich, die Eigenschaften der Fasern einzustellen, ohne die strukturbildende β-Faltblattsequenz verändern zu müssen. Um weitere Funktionen an den Fasern anzubringen, wurde die 1,3-dipolaren Addition verwendet. Diese Reaktion beschreibt die konzertierte Umlagerung eines Azides mit einem Alkin. Sie ist in den meisten Lösungsmitteln unter hohen Ausbeuten durchführbar. Im Rahmen der Arbeit wird die Erzeugung von Aziden untersucht und auf die Polymer-Peptid-Fasern übertragen. Der Diazotransfer stellte dabei die Methode der Wahl dar, so können Azidgruppen aus Aminen gewonnen werden. Unter Verwendung der 1,3-dipolaren Addition konnten verschiedene alkinfunktionale Moleküle kovalent an die azidfunktionalisierten Polymer-Peptid-Fasern gebunden werden. So wurde ein Fluoreszenzfarbstoff an die Fasern gebunden, der eine Abbildung der Fasern mittels konfokaler Mikroskopie erlaubte. Weiterhin wurden die Eigenschaften der Fasern durch Addition dreier carboxylfunktionaler Moleküle modifiziert. Diese Fasern konnten weiter genutzt werden, um Kalzium zu binden. Dabei variierte die Anzahl der gebundenen Kalziumionen in Abhängigkeit der jeweiligen Fasermodifikation erheblich. Weitere Untersuchungen, die Morphologie von Kalziumcarbonatkristallen betreffend, werden aktuell durchgeführt. Die kovalente Anbringung eines reduzierenden Zuckers an die Polymer-Peptid-Fasern erlaubt die Abscheidung von Silber aus Tollens Reagenz. Durch eine Entwicklung analog zur Schwarz-Weiss-Photographie können in nachfolgenden Arbeiten so Silberdrähte in Nanogröße erzeugt werden. An die azidfunktionalen Fasern können weitere funktionale Moleküle angebracht werden, um die Eigenschaften und das Anwendungsspektrum der Polymer-Peptid-Fasern zu erweitern. 2009 urn:nbn:de:kobv:517-opus-33016 Institut für Chemie OPUS4-4937 Dissertation Pfeifer, Sebastian Neue Ansätze zur Monomersequenzkontrolle in synthetischen Polymeren Von der Natur geschaffene Polymere faszinieren Polymerforscher durch ihre spezielle auf eine bestimmte Aufgabe ausgerichtete Funktionalität. Diese ergibt sich aus ihrer Bausteinabfolge uber die Ausbildung von Uberstrukturen. Dazu zählen zum Beispiel Proteine (Eiweiße), aus deren Gestalt sich wichtige Eigenschaften ergeben. Diese Struktureigenschaftsbeziehung gilt ebenso für funktionelle synthetische Makromoleküle. Demzufolge kann die Kontrolle der Monomersequenz in Polymeren bedeutend für die resultierende Form des Polymermoleküls sein. Obwohl die Synthese von synthetischen Polymeren mit der Komplexität und der Größe von Proteinen in absehbarer Zeit wahrscheinlich nicht gelingen wird, können wir von der Natur lernen, um neuartige Polymermaterialien mit definierten Strukturen (Sequenzen) zu synthetisieren. Deshalb ist die Entwicklung neuer und besserer Techniken zur Strukturkontrolle von großem Interesse für die Synthese von Makromolekülen, die perfekt auf ihre Funktion zugeschnitten sind. Im Gegensatz zu der Anzahl fortgeschrittener Synthesestrategien zum Design aus- gefallener Polymerarchitekturen - wie zum Beispiel Sterne oder baumartige Polymere (Dendrimere) - gibt es vergleichsweise wenig Ansätze zur echten Sequenzkontrolle in synthetischen Polymeren. Diese Arbeit stellt zwei unterschiedliche Techniken vor, mit denen die Monomersequenz innerhalb eines Polymers kontrolliert werden kann. Gerade bei den großtechnisch bedeutsamen radikalischen Polymerisationen ist die Sequenzkontrolle schwierig, weil die chemischen Bausteine (Monomere) sehr reaktiv sind. Im ersten Teil dieser Arbeit werden die Eigenschaften zweier Monomere (Styrol und N-substituiertes Maleinimid) geschickt ausgenutzt, um in eine Styrolkette definierte und lokal scharf abgegrenzte Funktionssequenzen einzubauen. Uber eine kontrollierte radikalische Polymerisationsmethode (ATRP) wurden in einer Ein-Topf-Synthese über das N-substituierte Maleinimid chemische Funktionen an einer beliebigen Stelle der Polystyrolkette eingebaut. Es gelang ebenfalls, vier unterschiedliche Funktionen in einer vorgegebenen Sequenz in die Polymerkette einzubauen. Diese Technik wurde an zwanzig verschiedenen N-substituierten Maleinimiden getestet, die meisten konnten erfolgreich in die Polymerkette integriert werden. In dem zweiten in dieser Arbeit vorgestellten Ansatz zur Sequenzkontrolle, wurde der schrittweise Aufbau eines Oligomers aus hydrophoben und hydrophilen Segmenten (ω-Alkin-Carbonsäure bzw. α-Amin-ω-Azid-Oligoethylenglycol) an einem löslichen Polymerträger durchgeführt. Das Oligomer konnte durch die geschickte Auswahl der Verknüpfungsreaktionen ohne Schutzgruppenstrategie synthetisiert werden. Der lösliche Polymerträger aus Polystyrol wurde mittels ATRP selbst synthetisiert. Dazu wurde ein Startreagenz (Initiator) entwickelt, das in der Mitte einen säurelabilen Linker, auf der einen Seite die initiierende Einheit und auf der anderen die Ankergruppe für die Anbindung des ersten Segments trägt. Der lösliche Polymerträger ermöglichte einerseits die schrittweise Synthese in Lösung. Andererseits konnten überschüssige Reagenzien und Nebenprodukte zwischen den Reaktionsschritten durch Fällung in einem Nicht-Lösungsmittel einfach abgetrennt werden. Der Linker ermöglichte die Abtrennung des Oligomers aus jeweils drei hydrophoben und hydrophilen Einheiten nach der Synthese. 2011 urn:nbn:de:kobv:517-opus-51385 Institut für Chemie OPUS4-44236 Dissertation Zemella, Anne Fluoreszenzmarkierung und Modifizierung von komplexen Proteinen in eukaryotischen zellfreien Systemen durch die Etablierung von orthogonalen tRNA/Aminoacyl-tRNA-Synthetase-Paaren Die funktionelle Charakterisierung von therapeutisch relevanten Proteinen kann bereits durch die Bereitstellung des Zielproteins in adäquaten Mengen limitierend sein. Dies trifft besonders auf Membranproteine zu, die aufgrund von zytotoxischen Effekten auf die Produktionszelllinie und der Tendenz Aggregate zu bilden, in niedrigen Ausbeuten an aktivem Protein resultieren können. Der lebende Organismus kann durch die Verwendung von translationsaktiven Zelllysaten umgangen werden- die Grundlage der zellfreien Proteinsynthese. Zu Beginn der Arbeit wurde die ATP-abhängige Translation eines Lysates auf der Basis von kultivierten Insektenzellen (Sf21) analysiert. Für diesen Zweck wurde ein ATP-bindendes Aptamer eingesetzt, durch welches die Translation der Nanoluziferase reguliert werden konnte. Durch die dargestellte Applizierung von Aptameren, könnten diese zukünftig in zellfreien Systemen für die Visualisierung der Transkription und Translation eingesetzt werden, wodurch zum Beispiel komplexe Prozesse validiert werden können. Neben der reinen Proteinherstellung können Faktoren wie posttranslationale Modifikationen sowie eine Integration in eine lipidische Membran essentiell für die Funktionalität des Membranproteins sein. Im zweiten Abschnitt konnte, im zellfreien Sf21-System, für den G-Protein-gekoppelten Rezeptor Endothelin B sowohl eine Integration in die endogen vorhandenen Endoplasmatisch Retikulum-basierten Membranstrukturen als auch Glykosylierungen, identifiziert werden. Auf der Grundlage der erfolgreichen Synthese des ET-B-Rezeptors wurden verschiedene Methoden zur Fluoreszenzmarkierung des Adenosin-Rezeptors A2a (Adora2a) angewandt und optimiert. Im dritten Abschnitt wurde der Adora2a mit Hilfe einer vorbeladenen tRNA, welche an eine fluoreszierende Aminosäure gekoppelt war, im zellfreien Chinesischen Zwerghamster Ovarien (CHO)-System markiert. Zusätzlich konnte durch den Einsatz eines modifizierten tRNA/Aminoacyl-tRNA-Synthetase-Paares eine nicht-kanonische Aminosäure an Position eines integrierten Amber-Stopcodon in die Polypeptidkette eingebaut und die funktionelle Gruppe im Anschluss an einen Fluoreszenzfarbstoff gekoppelt werden. Aufgrund des offenen Charakters eignen sich zellfreie Proteinsynthesesysteme besonders für eine Integration von exogenen Komponenten in den Translationsprozess. Mit Hilfe der Fluoreszenzmarkierung wurde eine ligandvermittelte Konformationsänderung im Adora2a über einen Biolumineszenz-Resonanzenergietransfer detektiert. Durch die Etablierung der Amber-Suppression wurde darüber hinaus das Hormon Erythropoetin pegyliert, wodurch Eigenschaften wie Stabilität und Halbwertszeit des Proteins verändert wurden. Zu guter Letzt wurde ein neues tRNA/Aminoacyl-tRNA-Synthetase-Paar auf Basis der Methanosarcina mazei Pyrrolysin-Synthetase etabliert, um das Repertoire an nicht-kanonischen Aminosäuren und den damit verbundenen Kopplungsreaktionen zu erweitern. Zusammenfassend wurden die Potenziale zellfreier Systeme in Bezug auf der Herstellung von komplexen Membranproteinen und der Charakterisierung dieser durch die Einbringung einer positionsspezifischen Fluoreszenzmarkierung verdeutlicht, wodurch neue Möglichkeiten für die Analyse und Funktionalisierung von komplexen Proteinen geschaffen wurden. 2019 XI, 141 urn:nbn:de:kobv:517-opus4-442361 10.25932/publishup-44236 Institut für Biochemie und Biologie