Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-7676 Dissertation Reiter, Karsten Crustal stress variability across spatial scales - examples from Canada, Northern Switzerland and a South African gold mine The quantitative descriptions of the state of stress in the Earth's crust, and spatial-temporal stress changes are of great importance in terms of scientific questions as well as applied geotechnical issues. Human activities in the underground (boreholes, tunnels, caverns, reservoir management, etc.) have a large impact on the stress state. It is important to assess, whether these activities may lead to (unpredictable) hazards, such as induced seismicity. Equally important is the understanding of the in situ stress state in the Earth's crust, as it allows the determination of safe well paths, already during well planning. The same goes for the optimal configuration of the injection- and production wells, where stimulation for artificial fluid path ways is necessary. The here presented cumulative dissertation consists of four separate manuscripts, which are already published, submitted or will be submitted for peer review within the next weeks. The main focus is on the investigation of the possible usage of geothermal energy in the province Alberta (Canada). A 3-D geomechanical-numerical model was designed to quantify the contemporary 3-D stress tensor in the upper crust. For the calibration of the regional model, 321 stress orientation data and 2714 stress magnitude data were collected, whereby the size and diversity of the database is unique. A calibration scheme was developed, where the model is calibrated versus the in situ stress data stepwise for each data type and gradually optimized using statistically test methods. The optimum displacement on the model boundaries can be determined by bivariate linear regression, based on only three model runs with varying deformation ratio. The best-fit model is able to predict most of the in situ stress data quite well. Thus, the model can provide the full stress tensor along any chosen virtual well paths. This can be used to optimize the orientation of horizontal wells, which e.g. can be used for reservoir stimulation. The model confirms regional deviations from the average stress orientation trend, such as in the region of the Peace River Arch and the Bow Island Arch. In the context of data compilation for the Alberta stress model, the Canadian database of the World Stress Map (WSM) could be expanded by including 514 new data records. This publication of an update of the Canadian stress map after ~20 years with a specific focus on Alberta shows, that the maximum horizontal stress (SHmax) is oriented southwest to northeast over large areas in Northern America. The SHmax orientation in Alberta is very homogeneous, with an average of about 47°. In order to calculate the average SHmax orientation on a regular grid as well as to estimate the wave-length of stress orientation, an existing algorithm has been improved and is applied to the Canadian data. The newly introduced quasi interquartile range on the circle (QIROC) improves the variance estimation of periodic data, as it is less susceptible to its outliers. Another geomechanical-numerical model was built to estimate the 3D stress tensor in the target area "Nördlich Lägern" in Northern Switzerland. This location, with Opalinus clay as a host rock, is a potential repository site for high-level radioactive waste. The performed modelling aims to investigate the sensitivity of the stress tensor on tectonic shortening, topography, faults and variable rock properties within the Mesozoic sedimentary stack, according to the required stability needed for a suitable radioactive waste disposal site. The majority of the tectonic stresses caused by the far-field shortening from the South are admitted by the competent rock units in the footwall and hanging wall of the argillaceous target horizon, the Upper Malm and Upper Muschelkalk. Thus, the differential stress within the host rock remains relatively low. East-west striking faults release stresses driven by tectonic shortening. The purely gravitational influence by the topography is low; higher SHmax magnitudes below topographical depression and lower values below hills are mainly observed near the surface. A complete calibration of the model is not possible, as no stress magnitude data are available for calibration, yet. The collection of this data will begin in 2015; subsequently they will be used to adjust the geomechanical-numerical model again. The third geomechanical-numerical model investigates the stress variation in an ultra-deep gold mine in South Africa. This reservoir model is spatially one order of magnitude smaller than the previous local model from Northern Switzerland. Here, the primary focus is to investigate the hypothesis that the Mw 1.9 earthquake on 27 December 2007 was induced by stress changes due to the mining process. The Coulomb failure stress change (DeltaCFS) was used to analyse the stress change. It confirmed that the seismic event was induced by static stress transfer due to the mining progress. The rock was brought closer to failure on the derived rupture plane by stress changes of up to 1.5-15MPa, in dependence of the DeltaCFS analysis type. A forward modelling of a generic excavation scheme reveals that with decreasing distance to the dyke the DeltaCFS values increase significantly. Hence, even small changes in the mining progress can have a significant impact on the seismic hazard risk, i.e. the change of the occurrence probability to induce a seismic event of economic concern. 2014 VIII, 149, XI urn:nbn:de:kobv:517-opus4-76762 Institut für Geowissenschaften