Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-34858 Wissenschaftlicher Artikel Ali, Mostafa; Homann, Thomas; Khalil, Mahmoud; Kruse, Hans-Peter; Rawel, Harshadrai Manilal Milk whey protein modification by coffee-specific phenolics effect on structural and functional properties A suitable vehicle for integration of bioactive plant constituents is proposed. It involves modification of proteins using phenolics and applying these for protection of labile constituents. It dissects the noncovalent and covalent interactions of beta-lactoglobulin with coffee-specific phenolics. Alkaline and polyphenol oxidase modulated covalent reactions were compared. Tryptic digestion combined with MALDI-TOF-MS provided tentative allocation of the modification type and site in the protein, and an in silico modeling of modified beta-lactoglobulin is proposed. The modification delivers proteins with enhanced antioxidative properties. Changed structural properties and differences in solubility, surface hydrophobicity, and emulsification were observed. The polyphenol oxidase modulated reaction provides a modified beta-lactoglobulin with a high antioxidative power, is thermally more stable, requires less energy to unfold, and, when emulsified with lutein esters, exhibits their higher stability against UV light. Thus, adaptation of this modification provides an innovative approach for functionalizing proteins and their uses in the food industry. Washington American Chemical Society 2013 10 Journal of agricultural and food chemistry : a publication of the American Chemical Society 61 28 6911 6920 10.1021/jf402221m Institut für Chemie OPUS4-35514 Wissenschaftlicher Artikel Ali, Mostafa; Homann, Thomas; Kreisel, Janka; Khalil, Mahmoud; Puhlmann, Ralf; Kruse, Hans-Peter; Rawel, Harshadrai Manilal Characterization and modeling of the interactions between coffee storage proteins and phenolic compounds This study addresses the interactions of coffee storage proteins with coffee-specific phenolic compounds. Protein profiles, of Coffea arabica and Coffea canephora (var robusta) were compared. Major Phenolic compounds were extracted and analyzed with appropriate methods. The polyphenol-protein interactions during protein extraction have been addressed by different analytical setups [reversed-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS), and Trolox equivalent antioxidant capacity (TEAC) assays], with focus directed toward identification of covalent adduct formation. The results indicate that C. arabica proteins are more susceptible to these interactions and the polyphenol oxidase activity seems to be a crucial factor for the formation of these addition products. A tentative allocation of the modification type and site in the protein has been attempted. Thus, the first available in silico modeling of modified coffee proteins is reported. The extent of these modifications may contribute to the structure and function of "coffee melanoidins" and are discussed in the context of coffee flavor formation. Washington American Chemical Society 2012 8 Journal of agricultural and food chemistry : a publication of the American Chemical Society 60 46 11601 11608 10.1021/jf303372a Institut für Chemie