Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-53612 Dissertation Wolf, Johannes Analysis and visualization of transport infrastructure based on large-scale geospatial mobile mapping data 3D point clouds are a universal and discrete digital representation of three-dimensional objects and environments. For geospatial applications, 3D point clouds have become a fundamental type of raw data acquired and generated using various methods and techniques. In particular, 3D point clouds serve as raw data for creating digital twins of the built environment. This thesis concentrates on the research and development of concepts, methods, and techniques for preprocessing, semantically enriching, analyzing, and visualizing 3D point clouds for applications around transport infrastructure. It introduces a collection of preprocessing techniques that aim to harmonize raw 3D point cloud data, such as point density reduction and scan profile detection. Metrics such as, e.g., local density, verticality, and planarity are calculated for later use. One of the key contributions tackles the problem of analyzing and deriving semantic information in 3D point clouds. Three different approaches are investigated: a geometric analysis, a machine learning approach operating on synthetically generated 2D images, and a machine learning approach operating on 3D point clouds without intermediate representation. In the first application case, 2D image classification is applied and evaluated for mobile mapping data focusing on road networks to derive road marking vector data. The second application case investigates how 3D point clouds can be merged with ground-penetrating radar data for a combined visualization and to automatically identify atypical areas in the data. For example, the approach detects pavement regions with developing potholes. The third application case explores the combination of a 3D environment based on 3D point clouds with panoramic imagery to improve visual representation and the detection of 3D objects such as traffic signs. The presented methods were implemented and tested based on software frameworks for 3D point clouds and 3D visualization. In particular, modules for metric computation, classification procedures, and visualization techniques were integrated into a modular pipeline-based C++ research framework for geospatial data processing, extended by Python machine learning scripts. All visualization and analysis techniques scale to large real-world datasets such as road networks of entire cities or railroad networks. The thesis shows that some use cases allow taking advantage of established image vision methods to analyze images rendered from mobile mapping data efficiently. The two presented semantic classification methods working directly on 3D point clouds are use case independent and show similar overall accuracy when compared to each other. While the geometry-based method requires less computation time, the machine learning-based method supports arbitrary semantic classes but requires training the network with ground truth data. Both methods can be used in combination to gradually build this ground truth with manual corrections via a respective annotation tool. This thesis contributes results for IT system engineering of applications, systems, and services that require spatial digital twins of transport infrastructure such as road networks and railroad networks based on 3D point clouds as raw data. It demonstrates the feasibility of fully automated data flows that map captured 3D point clouds to semantically classified models. This provides a key component for seamlessly integrated spatial digital twins in IT solutions that require up-to-date, object-based, and semantically enriched information about the built environment. 2021 vi, 121 urn:nbn:de:kobv:517-opus4-536129 10.25932/publishup-53612 Hasso-Plattner-Institut für Digital Engineering GmbH OPUS4-50913 Dissertation Stojanovic, Vladeta Digital twins for indoor built environments One of the key challenges in modern Facility Management (FM) is to digitally reflect the current state of the built environment, referred to as-is or as-built versus as-designed representation. While the use of Building Information Modeling (BIM) can address the issue of digital representation, the generation and maintenance of BIM data requires a considerable amount of manual work and domain expertise. Another key challenge is being able to monitor the current state of the built environment, which is used to provide feedback and enhance decision making. The need for an integrated solution for all data associated with the operational life cycle of a building is becoming more pronounced as practices from Industry 4.0 are currently being evaluated and adopted for FM use. This research presents an approach for digital representation of indoor environments in their current state within the life cycle of a given building. Such an approach requires the fusion of various sources of digital data. The key to solving such a complex issue of digital data integration, processing and representation is with the use of a Digital Twin (DT). A DT is a digital duplicate of the physical environment, states, and processes. A DT fuses as-designed and as-built digital representations of built environment with as-is data, typically in the form of floorplans, point clouds and BIMs, with additional information layers pertaining to the current and predicted states of an indoor environment or a complete building (e.g., sensor data). The design, implementation and initial testing of prototypical DT software services for indoor environments is presented and described. These DT software services are implemented within a service-oriented paradigm, and their feasibility is presented through functioning and tested key software components within prototypical Service-Oriented System (SOS) implementations. The main outcome of this research shows that key data related to the built environment can be semantically enriched and combined to enable digital representations of indoor environments, based on the concept of a DT. Furthermore, the outcomes of this research show that digital data, related to FM and Architecture, Construction, Engineering, Owner and Occupant (AECOO) activity, can be combined, analyzed and visualized in real-time using a service-oriented approach. This has great potential to benefit decision making related to Operation and Maintenance (O&M) procedures within the scope of the post-construction life cycle stages of typical office buildings. 2021 xxiii, 181 urn:nbn:de:kobv:517-opus4-509134 10.25932/publishup-50913 Hasso-Plattner-Institut für Digital Engineering GmbH OPUS4-42330 Dissertation Richter, Rico Concepts and techniques for processing and rendering of massive 3D point clouds Remote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and photogrammetric techniques, are fundamental approaches for efficient, automatic creation of digital representations of spatial environments. For example, they allow us to generate 3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential and universal category of geodata, 3D point clouds are used and processed by a growing number of applications, services, and systems such as in the domains of urban planning, landscape architecture, environmental monitoring, disaster management, virtual geographic environments as well as for spatial analysis and simulation. While the acquisition processes for 3D point clouds become more and more reliable and widely-used, applications and systems are faced with more and more 3D point cloud data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not contain any structural or semantics information. Many processing strategies common to GIS such as deriving polygon-based 3D models generally do not scale for billions of points. GIS typically reduce data density and precision of 3D point clouds to cope with the sheer amount of data, but that results in a significant loss of valuable information at the same time. This thesis proposes concepts and techniques designed to efficiently store and process massive 3D point clouds. To this end, object-class segmentation approaches are presented to attribute semantics to 3D point clouds, used, for example, to identify building, vegetation, and ground structures and, thus, to enable processing, analyzing, and visualizing 3D point clouds in a more effective and efficient way. Similarly, change detection and updating strategies for 3D point clouds are introduced that allow for reducing storage requirements and incrementally updating 3D point cloud databases. In addition, this thesis presents out-of-core, real-time rendering techniques used to interactively explore 3D point clouds and related analysis results. All techniques have been implemented based on specialized spatial data structures, out-of-core algorithms, and GPU-based processing schemas to cope with massive 3D point clouds having billions of points. All proposed techniques have been evaluated and demonstrated their applicability to the field of geospatial applications and systems, in particular for tasks such as classification, processing, and visualization. Case studies for 3D point clouds of entire cities with up to 80 billion points show that the presented approaches open up new ways to manage and apply large-scale, dense, and time-variant 3D point clouds as required by a rapidly growing number of applications and systems. 2018 v, 131 urn:nbn:de:kobv:517-opus4-423304 10.25932/publishup-42330 Hasso-Plattner-Institut für Digital Engineering GmbH OPUS4-4806 Dissertation Jamil, Abdlhamed Fernerkundung und GIS zur Erfassung, Modellierung und Visualisierung orientalischer Stadtstrukturen : das Beispiel Sanaa (Jemen) Gegenstand dieser Arbeit ist die Konzeption, Entwicklung und exemplarische Implementierung eines generischen Verfahrens zur Erfassung, Verarbeitung, Auswertung und kartographischen Visualisierung urbaner Strukturen im altweltlichen Trockengürtel mittels hochauflösender operationeller Fernerkundungsdaten. Das Verfahren wird am Beispiel der jemenitischen Hauptstadt Sanaa einer Vertreterin des Typus der Orientalischen Stadt angewandt und evaluiert. Das zu entwickelnde Verfahren soll auf Standardverfahren und Systemen der raumbezogenen Informationsverarbeitung basieren und in seinen wesentlichen Prozessschritten automatisiert werden können. Daten von hochauflösenden operationellen Fernerkundungssystemen (wie z.B. QuickBird, Ikonos u. a.) erlauben die Erkennung und Kartierung urbaner Objekte, wie Gebäude, Straßen und sogar Autos. Die mit ihnen erstellten Karten und den daraus gewonnenen Informationen können zur Erfassung von Urbanisierungsprozessen (Stadt- und Bevölkerungswachstum) herangezogen werden. Sie werden auch zur Generierung von 3D-Stadtmodellen genutzt. Diese dienen z.B. der Visualisierung für touristische Anwendungen, für die Stadtplanung, für Lärmanalysen oder für die Standortplanung von Mobilfunkantennen. Bei dem in dieser Arbeit erzeugten 3D-Visualisierung wurden jedoch keine Gebäudedetails erfasst. Entscheidend war vielmehr die Wiedergabe der Siedlungsstruktur, die im Vorhandensein und in der Anordnung der Gebäude liegt. In dieser Arbeit wurden Daten des Satellitensensors Quickbird von 2005 verwendet. Sie zeigen einen Ausschnitt der Stadt Sanaa in Jemen. Die Fernerkundungsdaten wurden durch andere Daten, u.a. auch Geländedaten, ergänzt und verifiziert. Das ausgearbeitete Verfahren besteht aus der Klassifikation der Satellitenbild-aufnahme, die u.a. pixelbezogen und für jede Klasse einzeln (pixelbezogene Klassifikation auf Klassenebene) durchgeführt wurde. Zusätzlich fand eine visuelle Interpretation der Satellitenbildaufnahme statt, bei der einzelne Flächen und die Straßen digitalisiert und die Objekte mit Symbolen gekennzeichnet wurden. Die aus beiden Verfahren erstellten Stadtkarten wurden zu einer fusioniert. Durch die Kombination der Ergebnisse werden die Vorteile beider Karten in einer vereint und ihre jeweiligen Schwächen beseitigt bzw. minimiert. Die digitale Erfassung der Konturlinien auf der Orthophotomap von Sanaa erlaubte die Erstellung eines Digitalen Geländemodells, das der dreidimensionalen Darstellung des Altstadtbereichs von Sanaa diente. Die 3D-Visualisierung wurde sowohl von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene als auch von der digitalen Erfassung der Objekte erstellt. Die Ergebnisse beider Visualisierungen wurden im Anschluss in einer Stadtkarte vereint. Bei allen Klassifikationsverfahren wurden die asphaltierten Straßen, die Vegetation und einzeln stehende Gebäude sehr gut erfasst. Die Klassifikation der Altstadt gestaltete sich aufgrund der dort für die Klassifikation herrschenden ungünstigen Bedingungen am problematischsten. Die insgesamt besten Ergebnisse mit den höchsten Genauigkeitswerten wurden bei der pixelbezogenen Klassifikation auf Klassenebene erzielt. Dadurch, dass jede Klasse einzeln klassifiziert wurde, konnte die zu einer Klasse gehörende Fläche besser erfasst und nachbearbeitet werden. Die Datenmenge wurde reduziert, die Bearbeitungszeit somit kürzer und die Speicherkapazität geringer. Die Auswertung bzw. visuelle Validierung der pixel-bezogenen Klassifikationsergebnisse auf Klassenebene mit dem Originalsatelliten-bild gestaltete sich einfacher und erfolgte genauer als bei den anderen durch-geführten Klassifikationsverfahren. Außerdem war es durch die alleinige Erfassung der Klasse Gebäude möglich, eine 3D-Visualisierung zu erzeugen. Bei einem Vergleich der erstellten Stadtkarten ergibt sich, dass die durch die visuelle Interpretation erstellte Karte mehr Informationen enthält. Die von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene erstellte Karte ist aber weniger arbeits- und zeitaufwendig zu erzeugen. Zudem arbeitet sie die Struktur einer orientalischen Stadt mit den wesentlichen Merkmalen besser heraus. Durch die auf Basis der 2D-Stadtkarten erstellte 3D-Visualisierung wird ein anderer räumlicher Eindruck vermittelt und bestimmte Elemente einer orientalischen Stadt deutlich gemacht. Dazu zählen die sich in der Altstadt befindenden Sackgassen und die ehemalige Stadtmauer. Auch die für Sanaa typischen Hochhäuser werden in der 3D-Visualisierung erkannt. Insgesamt wurde in der Arbeit ein generisches Verfahren entwickelt, dass mit geringen Modifikationen auch auf andere städtische Räume des Typus orientalische Stadt angewendet werden kann. 2010 urn:nbn:de:kobv:517-opus-50200 Institut für Umweltwissenschaften und Geographie