Dokument-ID Dokumenttyp Verfasser/Autoren Herausgeber Haupttitel Abstract Auflage Verlagsort Verlag Erscheinungsjahr Seitenzahl Schriftenreihe Titel Schriftenreihe Bandzahl ISBN Quelle der Hochschulschrift Konferenzname Quelle:Titel Quelle:Jahrgang Quelle:Heftnummer Quelle:Erste Seite Quelle:Letzte Seite URN DOI Abteilungen OPUS4-52824 Wissenschaftlicher Artikel Ballato, Paolo; Parra, Mauricio; Schildgen, Taylor F.; Dunkl, I.; Yildirim, C.; Özsayin, Erman; Sobel, Edward R.; Echtler, H.; Strecker, Manfred Multiple exhumation phases in the Central Pontides (N Turkey) The Central Pontides of N Turkey represents a mobile orogenic belt of the southern Eurasian margin that experienced several phases of exhumation associated with the consumption of different branches of the Neo-Tethys Ocean and the amalgamation of continental domains. Our new low-temperature thermochronology data help to constrain the timing of these episodes, providing new insights into associated geodynamic processes. In particular, our data suggest that exhumation occurred at (1) similar to 110 to 90Ma, most likely during tectonic accretion and exhumation of metamorphic rocks from the subduction zone; (2) from similar to 60 to 40Ma, during the collision of the Kirehir and Anatolide-Tauride microcontinental domains with the Eurasian margin; (3) from similar to 0 to 25Ma, either during the early stages of the Arabia-Eurasia collision (soft collision) when the Arabian passive margin reached the trench, implying 70 to 530km of subduction of the Arabian passive margin, or during a phase of trench advance predating hard collision at similar to 20Ma; and (4) similar to 11Ma to the present, during transpression associated with the westward motion of Anatolia. Our findings document the punctuated nature of fault-related exhumation, with episodes of fast cooling followed by periods of slow cooling or subsidence, the role of inverted normal faults in controlling the Paleogene exhumation pattern, and of the North Anatolian Fault in dictating the most recent pattern of exhumation. Washington American Geophysical Union 2018 27 Tectonics 37 6 1831 1857 10.1029/2017TC004808 Institut für Geowissenschaften OPUS4-34965 Wissenschaftlicher Artikel Thiede, Rasmus Christoph; Ehlers, Todd A. Large spatial and temporal variations in Himalayan denudation In the last decade growing interest has emerged in quantifying the spatial and temporal variations in mountain building. Until recently, insufficient data have been available to attempt such a task at the scale of large orogens such as the Himalaya. The Himalaya accommodates ongoing convergence between India and Eurasia and is a focal point for studying orogen evolution and hypothesized interactions between tectonics and climate. Here we integrate 1126 published bedrock mineral cooling ages with a transient 1D Monte-Carlo thermal-kinematic erosion model to quantify the denudation histories along similar to 2700 km of the Himalaya. The model free parameter is a temporally variable denudation rate from 50 Ma to present. Thermophysical material properties and boundary conditions were tuned to individual study areas. Monte-Carlo simulations were conducted to identify the range of denudation histories that can reproduce the observed cooling ages. Results indicate large temporal and spatial variations in denudation and these are resolvable across different tectonic units of the Himalaya. More specifically, across > 1000 km of the southern Greater Himalaya denudation rates were highest (similar to 1.5-3 mm/yr) between similar to 10 and 2 Ma and lower (0.5-2.6 mm/yr) over the last 2 My. These differences are best determined in the NW-Himalaya. In contrast to this, across the similar to 2500 km length of the northern Greater Himalaya denudation rates vary over length scales of similar to 300-1700 km. Slower denudation (<1 mm/yr) occurred between 10 and 4 Ma followed by a large increase (1.2-2.6 mm/yr) in the last similar to 4 Ma. We find that only the southern Greater Himalayan Sequence clearly supports a continuous co-evolution of tectonics, climate and denudation. Results from the higher elevation northern Greater Himalaya suggest either tectonic driven variations in denudation due to a ramp-flat geometry in the main decollement and/or recent glacially enhanced denudation. Amsterdam Elsevier 2013 16 Earth & planetary science letters 371 2 278 293 10.1016/j.epsl.2013.03.004 Institut für Geowissenschaften OPUS4-34957 Wissenschaftlicher Artikel Loebens, Stefan; Sobel, Edward R.; Bense, Frithjof A.; Wemmer, Klaus; Dunkl, Istvan; Siegesmund, Siegfried Refined exhumation history of the northern Sierras Pampeanas, Argentina The Sierra de Aconquija and Cumbres Calchaquies in the thick-skinned northern Sierras Pampeanas, NW Argentina present an ideal setting to investigate the tectonically and erosionally controlled exhumation and uplift history of mountain ranges using thermochronological methods. Although these ranges are located along strike of one another, their spatiotemporal evolution varies significantly. Integrating modeled cooling histories constrained by K-Ar ages of muscovite and biotite, apatite fission track data as well as (U-Th)/He measurement of zircon and apatite reveal the structural evolution of these ranges beginning in the late stage of the Paleozoic Famatinian Orogeny. Following localized rift-related exhumation in the central part of the study area and slow erosion elsewhere, growth of the modern topography commenced in the Cenozoic during Andean deformation. The main activity occurred during the late Miocene, with varying magnitudes of rock uplift, surface uplift, and exhumation in the two mountain ranges. The Cumbres Calchaquies is characterized by a total of 5-7km of vertical rock uplift, around 3km of crestal surface uplift, and a maximum exhumation of 2-4km since that time. The Sierra de Aconquija experienced 10-13km of vertical rock uplift, similar to 4-5km of peak surface uplift, and 6-8km of exhumation since around 9Ma. Much of this exhumation occurred along a previously poorly recognized fault. Miocene reactivation of Cretaceous rift structures may explain along-strike variations within these ranges. Dating of sedimentary samples from adjacent basins supports the evolutionary model developed for the mountain ranges. Washington American Geophysical Union 2013 20 Tectonics 32 3 453 472 10.1002/tect.20038 Institut für Geowissenschaften