@unpublished{Murr2011, author = {Murr, R{\"u}diger}, title = {Characterization of L{\´e}vy Processes by a duality formula and related results}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-43538}, year = {2011}, abstract = {Processes with independent increments are characterized via a duality formula, including Malliavin derivative and difference operators. This result is based on a characterization of infinitely divisible random vectors by a functional equation. A construction of the difference operator by a variational method is introduced and compared to approaches used by other authors for L´evy processes involving the chaos decomposition. Finally we extend our method to characterize infinitely divisible random measures.}, language = {en} } @unpublished{MeleardRoelly2011, author = {M{\´e}l{\´e}ard, Sylvie and Roelly, Sylvie}, title = {A host-parasite multilevel interacting process and continuous approximations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51694}, year = {2011}, abstract = {We are interested in modeling some two-level population dynamics, resulting from the interplay of ecological interactions and phenotypic variation of individuals (or hosts) and the evolution of cells (or parasites) of two types living in these individuals. The ecological parameters of the individual dynamics depend on the number of cells of each type contained by the individual and the cell dynamics depends on the trait of the invaded individual. Our models are rooted in the microscopic description of a random (discrete) population of individuals characterized by one or several adaptive traits and cells characterized by their type. The population is modeled as a stochastic point process whose generator captures the probabilistic dynamics over continuous time of birth, mutation and death for individuals and birth and death for cells. The interaction between individuals (resp. between cells) is described by a competition between individual traits (resp. between cell types). We look for tractable large population approximations. By combining various scalings on population size, birth and death rates and mutation step, the single microscopic model is shown to lead to contrasting nonlinear macroscopic limits of different nature: deterministic approximations, in the form of ordinary, integro- or partial differential equations, or probabilistic ones, like stochastic partial differential equations or superprocesses. The study of the long time behavior of these processes seems very hard and we only develop some simple cases enlightening the difficulties involved.}, language = {en} } @unpublished{Penisson2010, author = {P{\´e}nisson, Sophie}, title = {Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49589}, year = {2010}, abstract = {This thesis is concerned with the issue of extinction of populations composed of different types of individuals, and their behavior before extinction and in case of a very late extinction. We approach this question firstly from a strictly probabilistic viewpoint, and secondly from the standpoint of risk analysis related to the extinction of a particular model of population dynamics. In this context we propose several statistical tools. The population size is modeled by a branching process, which is either a continuous-time multitype Bienaym{\´e}-Galton-Watson process (BGWc), or its continuous-state counterpart, the multitype Feller diffsion process. We are interested in different kinds of conditioning on nonextinction, and in the associated equilibrium states. These ways of conditioning have been widely studied in the monotype case. However the literature on multitype processes is much less extensive, and there is no systematic work establishing connections between the results for BGWc processes and those for Feller diffusion processes. In the first part of this thesis, we investigate the behavior of the population before its extinction by conditioning the associated branching process Xt on non-extinction (Xt 6= 0), or more generally on non-extinction in a near future 0 < 1 (Xt+ 0 = 0), and by letting t tend to infinity. We prove the result, new in the multitype framework and for 0 > 0, that this limit exists and is nondegenerate. This re ects a stationary behavior for the dynamics of the population conditioned on non-extinction, and provides a generalization of the so-called Yaglom limit, corresponding to the case 0 = 0. In a second step we study the behavior of the population in case of a very late extinction, obtained as the limit when 0 tends to infinity of the process conditioned by Xt+ 0 = 0. The resulting conditioned process is a known object in the monotype case (sometimes referred to as Q-process), and has also been studied when Xt is a multitype Feller diffusion process. We investigate the not yet considered case where Xt is a multitype BGWc process and prove the existence of the associated Q-process. In addition, we examine its properties, including the asymptotic ones, and propose several interpretations of the process. Finally, we are interested in interchanging the limits in t and 0, as well as in the not yet studied commutativity of these limits with respect to the high-density-type relationship between BGWc processes and Feller processes. We prove an original and exhaustive list of all possible exchanges of limit (long-time limit in t, increasing delay of extinction 0, diffusion limit). The second part of this work is devoted to the risk analysis related both to the extinction of a population and to its very late extinction. We consider a branching population model (arising notably in the epidemiological context) for which a parameter related to the first moments of the offspring distribution is unknown. We build several estimators adapted to different stages of evolution of the population (phase growth, decay phase, and decay phase when extinction is expected very late), and prove moreover their asymptotic properties (consistency, normality). In particular, we build a least squares estimator adapted to the Q-process, allowing a prediction of the population development in the case of a very late extinction. This would correspond to the best or to the worst-case scenario, depending on whether the population is threatened or invasive. These tools enable us to study the extinction phase of the Bovine Spongiform Encephalopathy epidemic in Great Britain, for which we estimate the infection parameter corresponding to a possible source of horizontal infection persisting after the removal in 1988 of the major route of infection (meat and bone meal). This allows us to predict the evolution of the spread of the disease, including the year of extinction, the number of future cases and the number of infected animals. In particular, we produce a very fine analysis of the evolution of the epidemic in the unlikely event of a very late extinction.}, language = {en} } @unpublished{NehringZessin2010, author = {Nehring, Benjamin and Zessin, Hans}, title = {A path integral representation of the moment measures of the general ideal Bose gas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49635}, year = {2010}, abstract = {We reconsider the fundamental work of Fichtner ([2]) and exhibit the permanental structure of the ideal Bose gas again, using another approach which combines a characterization of infinitely divisible random measures (due to Kerstan,Kummer and Matthes [5, 6] and Mecke [8, 9]) with a decomposition of the moment measures into its factorial measures due to Krickeberg [4]. To be more precise, we exhibit the moment measures of all orders of the general ideal Bose gas in terms of certain path integrals. This representation can be considered as a point process analogue of the old idea of Symanzik [11] that local times and self-crossings of the Brownian motion can be used as a tool in quantum field theory. Behind the notion of a general ideal Bose gas there is a class of infinitely divisible point processes of all orders with a Levy-measure belonging to some large class of measures containing the one of the classical ideal Bose gas considered by Fichtner. It is well known that the calculation of moments of higher order of point processes are notoriously complicated. See for instance Krickeberg's calculations for the Poisson or the Cox process in [4].}, language = {en} } @unpublished{Zessin2010, author = {Zessin, Hans}, title = {Classical Symmetric Point Processes : Lectures held at ICIMAF, La Habana, Cuba, 2010}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49619}, year = {2010}, abstract = {The aim of these lectures is a reformulation and generalization of the fundamental investigations of Alexander Bach [2, 3] on the concept of probability in the work of Boltzmann [6] in the language of modern point process theory. The dominating point of view here is its subordination under the disintegration theory of Krickeberg [14]. This enables us to make Bach's consideration much more transparent. Moreover the point process formulation turns out to be the natural framework for the applications to quantum mechanical models.}, language = {en} } @unpublished{Penisson2010, author = {P{\´e}nisson, Sophie}, title = {Estimation of the infection parameter in the different phases of an epidemic modeled by a branching process}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49607}, year = {2010}, abstract = {The aim of this paper is to build and compare estimators of the infection parameter in the different phases of an epidemic (growth and extinction phases). The epidemic is modeled by a Markovian process of order d > 1 (allowing non-Markovian life spans), and can be written as a multitype branching process. We propose three estimators suitable for the different classes of criticality of the process, in particular for the subcritical case corresponding to the extinction phase. We prove their consistency and asymptotic normality for two asymptotics, when the number of ancestors (resp. number of generations) tends to infinity. We illustrate the asymptotic properties with simulated examples, and finally use our estimators to study the infection intensity in the extinction phase of the BSE epidemic in Great-Britain.}, language = {en} } @book{Liero2010, author = {Liero, Hannelore}, title = {Estimation and testing the effect of covariates in accelerated life time models under censoring}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52823}, publisher = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The accelerated lifetime model is considered. To test the influence of the covariate we transform the model in a regression model. Since censoring is allowed this approach leads to a goodness-of-fit problem for regression functions under censoring. So nonparametric estimation of regression functions under censoring is investigated, a limit theorem for a L2-distance is stated and a test procedure is formulated. Finally a Monte Carlo procedure is proposed.}, language = {en} } @unpublished{LaeuterRamadan2010, author = {L{\"a}uter, Henning and Ramadan, Ayad}, title = {Statistical Scaling of Categorical Data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49566}, year = {2010}, abstract = {Estimation and testing of distributions in metric spaces are well known. R.A. Fisher, J. Neyman, W. Cochran and M. Bartlett achieved essential results on the statistical analysis of categorical data. In the last 40 years many other statisticians found important results in this field. Often data sets contain categorical data, e.g. levels of factors or names. There does not exist any ordering or any distance between these categories. At each level there are measured some metric or categorical values. We introduce a new method of scaling based on statistical decisions. For this we define empirical probabilities for the original observations and find a class of distributions in a metric space where these empirical probabilities can be found as approximations for equivalently defined probabilities. With this method we identify probabilities connected with the categorical data and probabilities in metric spaces. Here we get a mapping from the levels of factors or names into points of a metric space. This mapping yields the scale for the categorical data. From the statistical point of view we use multivariate statistical methods, we calculate maximum likelihood estimations and compare different approaches for scaling.}, language = {en} } @unpublished{FradonRoelly2009, author = {Fradon, Myriam and Roelly, Sylvie}, title = {Infinitely many Brownian globules with Brownian radii}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49552}, year = {2009}, abstract = {We consider an infinite system of non overlaping globules undergoing Brownian motions in R3. The term globules means that the objects we are dealing with are spherical, but with a radius which is random and time-dependent. The dynamics is modelized by an infinitedimensional Stochastic Differential Equation with local time. Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also find a class of reversible measures.}, language = {en} } @unpublished{Penisson2009, author = {P{\´e}nisson, Sophie}, title = {Continuous-time multitype branching processes conditioned on very late extinction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49548}, year = {2009}, abstract = {Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.}, language = {en} }