@phdthesis{Burdack2014, author = {Burdack, Doreen}, title = {Water management policies and their impact on irrigated crop production in the Murray-Darling Basin, Australia}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-306-0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72245}, school = {Universit{\"a}t Potsdam}, pages = {307}, year = {2014}, abstract = {The economic impact analysis contained in this book shows how irrigation farming is particularly susceptible when applying certain water management policies in the Australian Murray-Darling Basin, one of the world largest river basins and Australia's most fertile region. By comparing different pricing and non-pricing water management policies with the help of the Water Integrated Market Model, it is found that the impact of water demand reducing policies is most severe on crops that need to be intensively irrigated and are at the same time less water productive. A combination of increasingly frequent and severe droughts and the application of policies that decrease agricultural water demand, in the same region, will create a situation in which the highly water dependent crops rice and cotton cannot be cultivated at all.}, language = {en} } @techreport{FranksKalkuhlLessmann2022, type = {Working Paper}, author = {Franks, Max and Kalkuhl, Matthias and Lessmann, Kai}, title = {Optimal Pricing for Carbon Dioxide Removal Under Inter-Regional Leakage}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {43}, issn = {2628-653X}, doi = {10.25932/publishup-53808}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-538080}, pages = {12}, year = {2022}, abstract = {Carbon dioxide removal (CDR) moves atmospheric carbon to geological or land-based sinks. In a first-best setting, the optimal use of CDR is achieved by a removal subsidy that equals the optimal carbon tax and marginal damages. We derive second-best subsidies for CDR when no global carbon price exists but a national government implements a unilateral climate policy. We find that the optimal carbon tax differs from an optimal CDR subsidy because of carbon leakage, terms-of-trade and fossil resource rent dynamics. First, the optimal removal subsidy tends to be larger than the carbon tax because of lower supply-side leakage on fossil resource markets. Second, terms-of-trade effects exacerbate this wedge for net resource exporters, implying even larger removal subsidies. Third, the optimal removal subsidy may fall below the carbon tax for resource-poor countries when marginal environmental damages are small.}, language = {en} }