@article{FolikumahNeffeBehletal.2019, author = {Folikumah, Makafui Yao and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Thiol Michael-Type reactions of optically active mercapto-acids in aqueous medium}, series = {MRS advances : a journal of the Materials Research Society}, volume = {4}, journal = {MRS advances : a journal of the Materials Research Society}, number = {46-47}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/adv.2019.308}, pages = {2515 -- 2525}, year = {2019}, abstract = {Defined chemical reactions in a physiological environment are a prerequisite for the in situ synthesis of implant materials potentially serving as matrix for drug delivery systems, tissue fillers or surgical glues. 'Click' reactions like thiol Michael-type reactions have been successfully employed as bioorthogonal reaction. However, due to the individual stereo-electronic and physical properties of specific substrates, an exact understanding their chemical reactivity is required if they are to be used for in-situ biomaterial synthesis. The chiral (S)-2-mercapto-carboxylic acid analogues of L-phenylalanine (SH-Phe) and L-leucine (SH-Leu) which are subunits of certain collagenase sensitive synthetic peptides, were explored for their potential for in-situ biomaterial formation via the thiol Michael-type reaction. In model reactions were investigated the kinetics, the specificity and influence of stereochemistry of this reaction. We could show that only reactions involving SH-Leu yielded the expected thiol-Michael product. The inability of SH-Phe to react was attributed to the steric hindrance of the bulky phenyl group. In aqueous media, successful reaction using SH-Leu is thought to proceed via the sodium salt formed in-situ by the addition of NaOH solution, which was intented to aid the solubility of the mercapto-acid in water. Fast reaction rates and complete acrylate/maleimide conversion were only realized at pH 7.2 or higher suggesting the possible use of SH-Leu under physiological conditions for thiol Michael-type reactions. This method of in-situ formed alkali salts could be used as a fast approach to screen mercapto-acids for thio Michael-type reactions without the synthesis of their corresponding esters.}, language = {en} } @misc{KaastraPaerelsDurretetal.2008, author = {Kaastra, Jelle S. and Paerels, Frits B.S. and Durret, Florence and Schindler, Sabine and Richter, Philipp}, title = {Thermal radiation processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {891}, issn = {1866-8372}, doi = {10.25932/publishup-43622}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436220}, pages = {155 -- 190}, year = {2008}, abstract = {We discuss the different physical processes that are important to understand the thermal X-ray emission and absorption spectra of the diffuse gas in clusters of galaxies and the warm-hot intergalactic medium. The ionisation balance, line and continuum emission and absorption properties are reviewed and several practical examples are given that illustrate the most important diagnostic features in the X-ray spectra.}, language = {en} } @article{SerranoMunozMishurovaThiedeetal.2020, author = {Serrano-Munoz, Itziar and Mishurova, Tatiana and Thiede, Tobias and Sprengel, Maximilian and Kromm, Arne and Nadammal, Naresh and Nolze, Gert and Saliwan-Neumann, Romeo and Evans, Alexander and Bruno, Giovanni}, title = {The residual stress in as-built laser powder bed fusion IN718 alloy as a consequence of the scanning strategy induced microstructure}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-71112-9}, pages = {15}, year = {2020}, abstract = {The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2 degrees) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS.}, language = {en} } @misc{SarhanKoopmanSchuetzetal.2018, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {698}, issn = {1866-8372}, doi = {10.25932/publishup-42719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427197}, pages = {8}, year = {2018}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @article{SarhanKoopmanSchuetzetal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-38627-2}, pages = {8}, year = {2019}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @misc{KuehneFischerZhou2020, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Zhou, Yuefang}, title = {The Human Takes It All}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {700}, issn = {1866-8364}, doi = {10.25932/publishup-49162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491625}, pages = {17}, year = {2020}, abstract = {Background: The increasing involvement of social robots in human lives raises the question as to how humans perceive social robots. Little is known about human perception of synthesized voices. Aim: To investigate which synthesized voice parameters predict the speaker's eeriness and voice likability; to determine if individual listener characteristics (e.g., personality, attitude toward robots, age) influence synthesized voice evaluations; and to explore which paralinguistic features subjectively distinguish humans from robots/artificial agents. Methods: 95 adults (62 females) listened to randomly presented audio-clips of three categories: synthesized (Watson, IBM), humanoid (robot Sophia, Hanson Robotics), and human voices (five clips/category). Voices were rated on intelligibility, prosody, trustworthiness, confidence, enthusiasm, pleasantness, human-likeness, likability, and naturalness. Speakers were rated on appeal, credibility, human-likeness, and eeriness. Participants' personality traits, attitudes to robots, and demographics were obtained. Results: The human voice and human speaker characteristics received reliably higher scores on all dimensions except for eeriness. Synthesized voice ratings were positively related to participants' agreeableness and neuroticism. Females rated synthesized voices more positively on most dimensions. Surprisingly, interest in social robots and attitudes toward robots played almost no role in voice evaluation. Contrary to the expectations of an uncanny valley, when the ratings of human-likeness for both the voice and the speaker characteristics were higher, they seemed less eerie to the participants. Moreover, when the speaker's voice was more humanlike, it was more liked by the participants. This latter point was only applicable to one of the synthesized voices. Finally, pleasantness and trustworthiness of the synthesized voice predicted the likability of the speaker's voice. Qualitative content analysis identified intonation, sound, emotion, and imageability/embodiment as diagnostic features. Discussion: Humans clearly prefer human voices, but manipulating diagnostic speech features might increase acceptance of synthesized voices and thereby support human-robot interaction. There is limited evidence that human-likeness of a voice is negatively linked to the perceived eeriness of the speaker.}, language = {en} } @article{KuehneFischerZhou2020, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Zhou, Yuefang}, title = {The Human Takes It All}, series = {Frontiers in Neurorobotics}, volume = {14}, journal = {Frontiers in Neurorobotics}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5218}, doi = {10.3389/fnbot.2020.593732}, pages = {15}, year = {2020}, abstract = {Background: The increasing involvement of social robots in human lives raises the question as to how humans perceive social robots. Little is known about human perception of synthesized voices. Aim: To investigate which synthesized voice parameters predict the speaker's eeriness and voice likability; to determine if individual listener characteristics (e.g., personality, attitude toward robots, age) influence synthesized voice evaluations; and to explore which paralinguistic features subjectively distinguish humans from robots/artificial agents. Methods: 95 adults (62 females) listened to randomly presented audio-clips of three categories: synthesized (Watson, IBM), humanoid (robot Sophia, Hanson Robotics), and human voices (five clips/category). Voices were rated on intelligibility, prosody, trustworthiness, confidence, enthusiasm, pleasantness, human-likeness, likability, and naturalness. Speakers were rated on appeal, credibility, human-likeness, and eeriness. Participants' personality traits, attitudes to robots, and demographics were obtained. Results: The human voice and human speaker characteristics received reliably higher scores on all dimensions except for eeriness. Synthesized voice ratings were positively related to participants' agreeableness and neuroticism. Females rated synthesized voices more positively on most dimensions. Surprisingly, interest in social robots and attitudes toward robots played almost no role in voice evaluation. Contrary to the expectations of an uncanny valley, when the ratings of human-likeness for both the voice and the speaker characteristics were higher, they seemed less eerie to the participants. Moreover, when the speaker's voice was more humanlike, it was more liked by the participants. This latter point was only applicable to one of the synthesized voices. Finally, pleasantness and trustworthiness of the synthesized voice predicted the likability of the speaker's voice. Qualitative content analysis identified intonation, sound, emotion, and imageability/embodiment as diagnostic features. Discussion: Humans clearly prefer human voices, but manipulating diagnostic speech features might increase acceptance of synthesized voices and thereby support human-robot interaction. There is limited evidence that human-likeness of a voice is negatively linked to the perceived eeriness of the speaker.}, language = {en} } @misc{GallegoLlorenteSarahJonesetal.2016, author = {Gallego-Llorente, Marcos and Sarah, Connell and Jones, Eppie R. and Merrett, Deborah C. and Jeon, Y. and Eriksson, Anders and Siska, Veronika and Gamba, Cristina and Meiklejohn, Christopher and Beyer, Robert and Jeon, Sungwon and Cho, Yun Sung and Hofreiter, Michael and Bhak, Jong and Manica, Andrea and Pinhasi, Ron}, title = {The genetics of an early Neolithic pastoralist from the Zagros, Iran}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {952}, issn = {1866-8372}, doi = {10.25932/publishup-43935}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439355}, pages = {9}, year = {2016}, abstract = {The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.}, language = {en} } @misc{CeulemansGaedkeKlauschiesetal.2019, author = {Ceulemans, Ruben and Gaedke, Ursula and Klauschies, Toni and Guill, Christian}, title = {The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {744}, issn = {1866-8372}, doi = {10.25932/publishup-43543}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435439}, pages = {16}, year = {2019}, abstract = {Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs.}, language = {en} } @article{CeulemansGaedkeKlauschiesetal.2019, author = {Ceulemans, Ruben and Gaedke, Ursula and Klauschies, Toni and Guill, Christian}, title = {The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-43974-1}, pages = {16}, year = {2019}, abstract = {Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs.}, language = {en} }